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Overview: GLIMMIX Procedure
The GLIMMIX procedure fits statistical models to data with correlations or nonconstant variability and
where the response is not necessarily normally distributed. These models are known as generalized linear
mixed models (GLMM).

GLMMs, like linear mixed models, assume normal (Gaussian) random effects. Conditional on these random
effects, data can have any distribution in the exponential family. The exponential family comprises many of
the elementary discrete and continuous distributions. The binary, binomial, Poisson, and negative binomial
distributions, for example, are discrete members of this family. The normal, beta, gamma, and chi-square
distributions are representatives of the continuous distributions in this family. In the absence of random
effects, the GLIMMIX procedure fits generalized linear models (fit by the GENMOD procedure).

GLMMs are useful for the following applications:

� estimating trends in disease rates

� modeling CD4 counts in a clinical trial over time

� modeling the proportion of infected plants on experimental units in a design with randomly selected
treatments or randomly selected blocks

� predicting the probability of high ozone levels in counties

� modeling skewed data over time

� analyzing customer preference

� joint modeling of multivariate outcomes

Such data often display correlations among some or all observations as well as nonnormality. The correla-
tions can arise from repeated observation of the same sampling units, shared random effects in an experi-
mental design, spatial (temporal) proximity, multivariate observations, and so on.

The GLIMMIX procedure does not fit hierarchical models with nonnormal random effects. With the GLIM-
MIX procedure you select the distribution of the response variable conditional on normally distributed ran-
dom effects.

For more information about the differences between the GLIMMIX procedure and SAS procedures that
specialize in certain subsets of the GLMM models, see the section “PROC GLIMMIX Contrasted with
Other SAS Procedures” on page 2920.

Basic Features
The GLIMMIX procedure enables you to specify a generalized linear mixed model and to perform confirma-
tory inference in such models. The syntax is similar to that of the MIXED procedure and includes CLASS,
MODEL, and RANDOM statements. For instructions on how to specify PROC MIXED REPEATED effects
with PROC GLIMMIX, see the section “Comparing the GLIMMIX and MIXED Procedures” on page 3101.
The following are some of the basic features of PROC GLIMMIX.
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� SUBJECT= and GROUP= options, which enable blocking of variance matrices and parameter het-
erogeneity

� choice of linearization approach or integral approximation by quadrature or Laplace method for mixed
models with nonlinear random effects or nonnormal distribution

� choice of linearization about expected values or expansion about current solutions of best linear un-
biased predictors

� flexible covariance structures for random and residual random effects, including variance components,
unstructured, autoregressive, and spatial structures

� CONTRAST, ESTIMATE, LSMEANS, and LSMESTIMATE statements, which produce hypothesis
tests and estimable linear combinations of effects

� NLOPTIONS statement, which enables you to exercise control over the numerical optimization. You
can choose techniques, update methods, line search algorithms, convergence criteria, and more. Or,
you can choose the default optimization strategies selected for the particular class of model you are
fitting.

� computed variables with SAS programming statements inside of PROC GLIMMIX (except for vari-
ables listed in the CLASS statement). These computed variables can appear in the MODEL, RAN-
DOM, WEIGHT, or FREQ statement.

� grouped data analysis

� user-specified link and variance functions

� choice of model-based variance-covariance estimators for the fixed effects or empirical (sandwich)
estimators to make analysis robust against misspecification of the covariance structure and to adjust
for small-sample bias

� joint modeling for multivariate data. For example, you can model binary and normal responses from
a subject jointly and use random effects to relate (fuse) the two outcomes.

� multinomial models for ordinal and nominal outcomes

� univariate and multivariate low-rank mixed model smoothing

Assumptions
The primary assumptions underlying the analyses performed by PROC GLIMMIX are as follows:

� If the model contains random effects, the distribution of the data conditional on the random effects
is known. This distribution is either a member of the exponential family of distributions or one of
the supplementary distributions provided by the GLIMMIX procedure. In models without random
effects, the unconditional (marginal) distribution is assumed to be known for maximum likelihood
estimation, or the first two moments are known in the case of quasi-likelihood estimation.
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� The conditional expected value of the data takes the form of a linear mixed model after a monotonic
transformation is applied.

� The problem of fitting the GLMM can be cast as a singly or doubly iterative optimization problem.
The objective function for the optimization is a function of either the actual log likelihood, an approx-
imation to the log likelihood, or the log likelihood of an approximated model.

For a model containing random effects, the GLIMMIX procedure, by default, estimates the parameters
by applying pseudo-likelihood techniques as in Wolfinger and O’Connell (1993) and Breslow and Clayton
(1993). In a model without random effects (GLM models), PROC GLIMMIX estimates the parameters
by maximum likelihood, restricted maximum likelihood, or quasi-likelihood. See the section “Singly or
Doubly Iterative Fitting” on page 3104 about when the GLIMMIX procedure applies noniterative, singly
and doubly iterative algorithms, and the section “Default Estimation Techniques” on page 3106 about the
default estimation methods. You can also fit generalized linear mixed models by maximum likelihood where
the marginal distribution is numerically approximated by the Laplace method (METHOD=LAPLACE) or
by adaptive Gaussian quadrature (METHOD=QUAD).

Once the parameters have been estimated, you can perform statistical inferences for the fixed effects and
covariance parameters of the model. Tests of hypotheses for the fixed effects are based on Wald-type tests
and the estimated variance-covariance matrix. The COVTEST statement enables you to perform inferences
about covariance parameters based on likelihood ratio tests.

PROC GLIMMIX uses the Output Delivery System (ODS) for displaying and controlling the output from
SAS procedures. ODS enables you to convert any of the output from PROC GLIMMIX into a SAS data set.
See the section “ODS Table Names” on page 3113 for more information.

The GLIMMIX procedure uses ODS Graphics to create graphs as part of its output. For general information
about ODS Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For specific information about the
statistical graphics available with the GLIMMIX procedure, see the PLOTS options in the PROC GLIMMIX
and LSMEANS statements.

Notation for the Generalized Linear Mixed Model
This section introduces the mathematical notation used throughout the chapter to describe the generalized
linear mixed model (GLMM). See the section “Details: GLIMMIX Procedure” on page 3047 for a descrip-
tion of the fitting algorithms and the mathematical-statistical details.

The Basic Model

Suppose Y represents the .n�1/ vector of observed data and 
 is a .r�1/ vector of random effects. Models
fit by the GLIMMIX procedure assume that

EŒYj
� D g�1.Xˇ C Z
/

where g.�/ is a differentiable monotonic link function and g�1.�/ is its inverse. The matrix X is an .n � p/
matrix of rank k, and Z is an .n � r/ design matrix for the random effects. The random effects are assumed
to be normally distributed with mean 0 and variance matrix G.
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The GLMM contains a linear mixed model inside the inverse link function. This model component is
referred to as the linear predictor,

� D Xˇ C Z


The variance of the observations, conditional on the random effects, is

VarŒYj
� D A1=2RA1=2

The matrix A is a diagonal matrix and contains the variance functions of the model. The variance function
expresses the variance of a response as a function of the mean. The GLIMMIX procedure determines
the variance function from the DIST= option in the MODEL statement or from the user-supplied variance
function (see the section “Implied Variance Functions” on page 3043). The matrix R is a variance matrix
specified by the user through the RANDOM statement. If the conditional distribution of the data contains
an additional scale parameter, it is either part of the variance functions or part of the R matrix. For example,
the gamma distribution with mean � has the variance function a.�/ D �2 and VarŒY j
� D �2�. If your
model calls for G-side random effects only (see the next section), the procedure models R D �I, where I is
the identity matrix. Table 41.19 identifies the distributions for which � � 1.

G-Side and R-Side Random Effects and Covariance Structures

The GLIMMIX procedure distinguishes two types of random effects. Depending on whether the parameters
of the covariance structure for random components in your model are contained in G or in R, the procedure
distinguishes between “G-side” and “R-side” random effects. The associated covariance structures of G
and R are similarly termed the G-side and R-side covariance structure, respectively. R-side effects are also
called “residual” effects. Simply put, if a random effect is an element of 
 , it is a G-side effect and you
are modeling the G-side covariance structure; otherwise, you are modeling the R-side covariance structure
of the model. Models without G-side effects are also known as marginal (or population-averaged) models.
Models fit with the GLIMMIX procedure can have none, one, or more of each type of effect.

Note that an R-side effect in the GLIMMIX procedure is equivalent to a REPEATED effect in the MIXED
procedure. The R-side covariance structure in the GLIMMIX procedure is the covariance structure that you
would formulate with the REPEATED statement in the MIXED procedure. In the GLIMMIX procedure all
random effects and their covariance structures are specified through the RANDOM statement. See the sec-
tion “Comparing the GLIMMIX and MIXED Procedures” on page 3101 for a comparison of the GLIMMIX
and MIXED procedures.

The columns of X are constructed from effects listed on the right side in the MODEL statement. Columns
of Z and the variance matrices G and R are constructed from the RANDOM statement.

The R matrix is by default the scaled identity matrix, R D �I. The scale parameter � is set to one if
the distribution does not have a scale parameter, such as in the case of the binary, binomial, Poisson, and
exponential distribution (see Table 41.19). To specify a different R matrix, use the RANDOM statement
with the _RESIDUAL_ keyword or the RESIDUAL option. For example, to specify that the Time effect for
each patient is an R-side effect with a first-order autoregressive covariance structure, use the RESIDUAL
option:

random time / type=ar(1) subject=patient residual;
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To add a multiplicative overdispersion parameter, use the _RESIDUAL_ keyword:

random _residual_;

You specify the link function g.�/ with the LINK= option in the MODEL statement or with programming
statements. You specify the variance function that controls the matrix A with the DIST= option in the
MODEL statement or with programming statements.

Unknown quantities subject to estimation are the fixed-effects parameter vector ˇ and the covariance pa-
rameter vector � that comprises all unknowns in G and R. The random effects 
 are not parameters of the
model in the sense that they are not estimated. The vector 
 is a vector of random variables. The solutions
for 
 are predictors of these random variables.

Relationship with Generalized Linear Models

Generalized linear models (Nelder and Wedderburn 1972; McCullagh and Nelder 1989) are a special case
of GLMMs. If 
 D 0 and R D �I, the GLMM reduces to either a generalized linear model (GLM) or
a GLM with overdispersion. For example, if Y is a vector of Poisson variables so that A is a diagonal
matrix containing EŒY� D � on the diagonal, then the model is a Poisson regression model for � D 1 and
overdispersed relative to a Poisson distribution for � > 1. Because the Poisson distribution does not have an
extra scale parameter, you can model overdispersion by adding the following statement to your GLIMMIX
program:

random _residual_;

If the only random effect is an overdispersion effect, PROC GLIMMIX fits the model by (restricted) maxi-
mum likelihood and not by one of the methods specific to GLMMs.

PROC GLIMMIX Contrasted with Other SAS Procedures
The GLIMMIX procedure generalizes the MIXED and GENMOD procedures in two important ways. First,
the response can have a nonnormal distribution. The MIXED procedure assumes that the response is nor-
mally (Gaussian) distributed. Second, the GLIMMIX procedure incorporates random effects in the model
and so allows for subject-specific (conditional) and population-averaged (marginal) inference. The GEN-
MOD procedure allows only for marginal inference.

The GLIMMIX and MIXED procedure are closely related; see the syntax and feature comparison in the
section “Comparing the GLIMMIX and MIXED Procedures” on page 3101. The remainder of this section
compares the GLIMMIX procedure with the GENMOD, NLMIXED, LOGISTIC, and CATMOD proce-
dures.

The GENMOD procedure fits generalized linear models for independent data by maximum likelihood. It
can also handle correlated data through the marginal GEE approach of Liang and Zeger (1986) and Zeger
and Liang (1986). The GEE implementation in the GENMOD procedure is a marginal method that does not
incorporate random effects. The GEE estimation in the GENMOD procedure relies on R-side covariances
only, and the unknown parameters in R are estimated by the method of moments. The GLIMMIX proce-
dure allows G-side random effects and R-side covariances. PROC GLIMMIX can fit marginal (GEE-type)
models, but the covariance parameters are not estimated by the method of moments. The parameters are
estimated by likelihood-based techniques. When the GLIMMIX and GENMOD procedures fit a generalized
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linear model where the distribution contains a scale parameter, such as the normal, gamma, inverse Gaus-
sian, or negative binomial distribution, the scale parameter is reported in the “Parameter Estimates” table.
For some distributions, the parameterization of this parameter differs. See the section “Scale and Dispersion
Parameters” on page 3050 for details about how the GLIMMIX procedure parameterizes the log-likelihood
functions and information about how the reported quantities differ between the two procedures.

Many of the fit statistics and tests in the GENMOD procedure are based on the likelihood. In a GLMM
it is not always possible to derive the log likelihood of the data. Even if the log likelihood is tractable, it
might be computationally infeasible. In some cases, the objective function must be constructed based on
a substitute model. In other cases, only the first two moments of the marginal distribution can be approxi-
mated. Consequently, obtaining likelihood-based tests and statistics is difficult for many generalized linear
mixed models. The GLIMMIX procedure relies heavily on linearization and Taylor-series techniques to
construct Wald-type test statistics and confidence intervals. Likelihood ratio tests and confidence intervals
for covariance parameters are available in the GLIMMIX procedure through the COVTEST statement.

The NLMIXED procedure fits nonlinear mixed models where the conditional mean function is a general
nonlinear function. The class of generalized linear mixed models is a special case of the nonlinear mixed
models; hence some of the models you can fit with PROC NLMIXED can also be fit with the GLIMMIX pro-
cedure. The NLMIXED procedure relies by default on approximating the marginal log likelihood through
adaptive Gaussian quadrature. In the GLIMMIX procedure, maximum likelihood estimation by adaptive
Gaussian quadrature is available with the METHOD=QUAD option in the PROC GLIMMIX statement.
The default estimation methods thus differ between the NLMIXED and GLIMMIX procedures, because
adaptive quadrature is possible for only a subset of the models available with the GLIMMIX procedure. If
you choose METHOD=LAPLACE or METHOD=QUAD(QPOINTS=1) in the PROC GLIMMIX statement
for a generalized linear mixed model, the GLIMMIX procedure performs maximum likelihood estimation
based on a Laplace approximation of the marginal log likelihood. This is equivalent to the QPOINTS=1
option in the NLMIXED procedure.

The LOGISTIC and CATMOD procedures also fit generalized linear models; PROC LOGISTIC accommo-
dates the independence case only. Binary, binomial, multinomial models for ordered data, and generalized
logit models that can be fit with PROC LOGISTIC can also be fit with the GLIMMIX procedure. The diag-
nostic tools and capabilities specific to such data implemented in the LOGISTIC procedure go beyond the
capabilities of the GLIMMIX procedure.

Getting Started: GLIMMIX Procedure

Logistic Regressions with Random Intercepts
Researchers investigated the performance of two medical procedures in a multicenter study. They randomly
selected 15 centers for inclusion. One of the study goals was to compare the occurrence of side effects for
the procedures. In each center nA patients were randomly selected and assigned to procedure “A,” and nB
patients were randomly assigned to procedure “B.” The following DATA step creates the data set for the
analysis:
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data multicenter;
input center group$ n sideeffect;
datalines;

1 A 32 14
1 B 33 18
2 A 30 4
2 B 28 8
3 A 23 14
3 B 24 9
4 A 22 7
4 B 22 10
5 A 20 6
5 B 21 12
6 A 19 1
6 B 20 3
7 A 17 2
7 B 17 6
8 A 16 7
8 B 15 9
9 A 13 1
9 B 14 5

10 A 13 3
10 B 13 1
11 A 11 1
11 B 12 2
12 A 10 1
12 B 9 0
13 A 9 2
13 B 9 6
14 A 8 1
14 B 8 1
15 A 7 1
15 B 8 0
;

The variable group identifies the two procedures, n is the number of patients who received a given procedure
in a particular center, and sideeffect is the number of patients who reported side effects.

If YiA and YiB denote the number of patients in center i who report side effects for procedures A and B,
respectively, then—for a given center—these are independent binomial random variables. To model the
probability of side effects for the two drugs, �iA and �iB , you need to account for the fixed group effect and
the random selection of centers. One possibility is to assume a model that relates group and center effects
linearly to the logit of the probabilities:

log
�

�iA

1 � �iA

�
D ˇ0 C ˇA C 
i

log
�

�iB

1 � �iB

�
D ˇ0 C ˇB C 
i

In this model, ˇA � ˇB measures the difference in the logits of experiencing side effects, and the 
i are
independent random variables due to the random selection of centers. If you think of ˇ0 as the overall
intercept in the model, then the 
i are random intercept adjustments. Observations from the same center
receive the same adjustment, and these vary randomly from center to center with variance VarŒ
i � D �2c .
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Because �iA is the conditional mean of the sample proportion, EŒYiA=niAj
i � D �iA, you can model the
sample proportions as binomial ratios in a generalized linear mixed model. The following statements request
this analysis under the assumption of normally distributed center effects with equal variance and a logit link
function:

proc glimmix data=multicenter;
class center group;
model sideeffect/n = group / solution;
random intercept / subject=center;

run;

The PROC GLIMMIX statement invokes the procedure. The CLASS statement instructs the procedure
to treat the variables center and group as classification variables. The MODEL statement specifies the
response variable as a sample proportion by using the events/trials syntax. In terms of the previous formulas,
sideeffect/n corresponds to YiA=niA for observations from group A and to YiB=niB for observations from
group B. The SOLUTION option in the MODEL statement requests a listing of the solutions for the fixed-
effects parameter estimates. Note that because of the events/trials syntax, the GLIMMIX procedure defaults
to the binomial distribution, and that distribution’s default link is the logit link. The RANDOM statement
specifies that the linear predictor contains an intercept term that randomly varies at the level of the center
effect. In other words, a random intercept is drawn separately and independently for each center in the study.

The results of this analysis are shown in Figure 41.1–Figure 41.9.

The “Model Information Table” in Figure 41.1 summarizes important information about the model you fit
and about aspects of the estimation technique.

Figure 41.1 Model Information

The GLIMMIX Procedure

Model Information

Data Set WORK.MULTICENTER
Response Variable (Events) sideeffect
Response Variable (Trials) n
Response Distribution Binomial
Link Function Logit
Variance Function Default
Variance Matrix Blocked By center
Estimation Technique Residual PL
Degrees of Freedom Method Containment

PROC GLIMMIX recognizes the variables sideeffect and n as the numerator and denominator in the
events/trials syntax, respectively. The distribution—conditional on the random center effects—is binomial.
The marginal variance matrix is block-diagonal, and observations from the same center form the blocks.
The default estimation technique in generalized linear mixed models is residual pseudo-likelihood with a
subject-specific expansion (METHOD=RSPL).

The “Class Level Information” table lists the levels of the variables specified in the CLASS statement and
the ordering of the levels. The “Number of Observations” table displays the number of observations read
and used in the analysis (Figure 41.2).
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Figure 41.2 Class Level Information and Number of Observations

Class Level Information

Class Levels Values

center 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
group 2 A B

Number of Observations Read 30
Number of Observations Used 30
Number of Events 155
Number of Trials 503

There are two variables listed in the CLASS statement. The center variable has fifteen levels, and the group
variable has two levels. Because the response is specified through the events/trial syntax, the “Number of
Observations” table also contains the total number of events and trials used in the analysis.

The “Dimensions” table lists the size of relevant matrices (Figure 41.3).

Figure 41.3 Dimensions

Dimensions

G-side Cov. Parameters 1
Columns in X 3
Columns in Z per Subject 1
Subjects (Blocks in V) 15
Max Obs per Subject 2

There are three columns in the X matrix, corresponding to an intercept and the two levels of the group
variable. For each subject (center), the Z matrix contains only an intercept column.

The “Optimization Information” table provides information about the methods and size of the optimization
problem (Figure 41.4).

Figure 41.4 Optimization Information

Optimization Information

Optimization Technique Dual Quasi-Newton
Parameters in Optimization 1
Lower Boundaries 1
Upper Boundaries 0
Fixed Effects Profiled
Starting From Data
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The default optimization technique for generalized linear mixed models with binomial data is the quasi-
Newton method. Because a residual likelihood technique is used to compute the objective function, only the
covariance parameters participate in the optimization. A lower boundary constraint is placed on the variance
component for the random center effect. The solution for this variance cannot be less than zero.

The “Iteration History” table displays information about the progress of the optimization process. After the
initial optimization, the GLIMMIX procedure performed 15 updates before the convergence criterion was
met (Figure 41.5). At convergence, the largest absolute value of the gradient was near zero. This indicates
that the process stopped at an extremum of the objective function.

Figure 41.5 Iteration History and Convergence Status

Iteration History

Objective Max
Iteration Restarts Subiterations Function Change Gradient

0 0 5 79.688580269 0.11807224 7.851E-7
1 0 3 81.294622554 0.02558021 8.209E-7
2 0 2 81.438701534 0.00166079 4.061E-8
3 0 1 81.444083567 0.00006263 2.311E-8
4 0 1 81.444265216 0.00000421 0.000025
5 0 1 81.444277364 0.00000383 0.000023
6 0 1 81.444266322 0.00000348 0.000021
7 0 1 81.44427636 0.00000316 0.000019
8 0 1 81.444267235 0.00000287 0.000017
9 0 1 81.444275529 0.00000261 0.000016

10 0 1 81.44426799 0.00000237 0.000014
11 0 1 81.444274843 0.00000216 0.000013
12 0 1 81.444268614 0.00000196 0.000012
13 0 1 81.444274277 0.00000178 0.000011
14 0 1 81.444269129 0.00000162 9.772E-6
15 0 0 81.444273808 0.00000000 9.102E-6

Convergence criterion (PCONV=1.11022E-8) satisfied.

The “Fit Statistics” table lists information about the fitted model (Figure 41.6).

Figure 41.6 Fit Statistics

Fit Statistics

-2 Res Log Pseudo-Likelihood 81.44
Generalized Chi-Square 30.69
Gener. Chi-Square / DF 1.10

Twice the negative of the residual log likelihood in the final pseudo-model equaled 81.44. The ratio of the
generalized chi-square statistic and its degrees of freedom is close to 1. This is a measure of the residual
variability in the marginal distribution of the data.
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The “Covariance Parameter Estimates” table displays estimates and asymptotic estimated standard errors
for all covariance parameters (Figure 41.7).

Figure 41.7 Covariance Parameter Estimates

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

Intercept center 0.6176 0.3181

The variance of the random center intercepts on the logit scale is estimated asb�2c D 0:6176.

The “Parameter Estimates” table displays the solutions for the fixed effects in the model (Figure 41.8).

Figure 41.8 Parameter Estimates

Solutions for Fixed Effects

Standard
Effect group Estimate Error DF t Value Pr > |t|

Intercept -0.8071 0.2514 14 -3.21 0.0063
group A -0.4896 0.2034 14 -2.41 0.0305
group B 0 . . . .

Because of the fixed-effects parameterization used in the GLIMMIX procedure, the “Intercept” effect is an
estimate of ˇ0C ˇB , and the “A” group effect is an estimate of ˇA � ˇB , the log odds ratio. The associated
estimated probabilities of side effects in the two groups are

b�A D 1

1C expf0:8071C 0:4896g
D 0:2147

b�B D 1

1C expf0:8071g
D 0:3085

There is a significant difference between the two groups (p = 0.0305).

The “Type III Tests of Fixed Effect” table displays significance tests for the fixed effects in the model
(Figure 41.9).

Figure 41.9 Type III Tests of Fixed Effects

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

group 1 14 5.79 0.0305
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Because the group effect has only two levels, the p-value for the effect is the same as in the “Parameter
Estimates” table, and the “F Value” is the square of the “t Value” shown there.

You can produce the estimates of the average logits in the two groups and their predictions on the scale of
the data with the LSMEANS statement in PROC GLIMMIX:

ods select lsmeans;
proc glimmix data=multicenter;

class center group;
model sideeffect/n = group / solution;
random intercept / subject=center;
lsmeans group / cl ilink;

run;

The LSMEANS statement requests the least squares means of the group effect on the logit scale. The CL
option requests their confidence limits. The ILINK option adds estimates, standard errors, and confidence
limits on the mean (probability) scale (Figure 41.10).

Figure 41.10 Least Squares Means

The GLIMMIX Procedure

group Least Squares Means

Standard
group Estimate Error DF t Value Pr > |t| Alpha Lower Upper

A -1.2966 0.2601 14 -4.99 0.0002 0.05 -1.8544 -0.7388
B -0.8071 0.2514 14 -3.21 0.0063 0.05 -1.3462 -0.2679

group Least Squares Means

Standard
Error Lower Upper

group Mean Mean Mean Mean

A 0.2147 0.04385 0.1354 0.3233
B 0.3085 0.05363 0.2065 0.4334

The “Estimate” column displays the least squares mean estimate on the logit scale, and the “Mean” column
represents its mapping onto the probability scale. The “Lower” and “Upper” columns are 95% confidence
limits for the logits in the two groups. The “Lower Mean” and “Upper Mean” columns are the corresponding
confidence limits for the probabilities of side effects. These limits are obtained by inversely linking the
confidence bounds on the linear scale, and thus are not symmetric about the estimate of the probabilities.
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Syntax: GLIMMIX Procedure
The following statements are available in the GLIMMIX procedure:

PROC GLIMMIX < options > ;
BY variables ;
CLASS variable < (REF= option) > . . . < variable < (REF= option) > > < / global-options > ;
CODE < options > ;
CONTRAST ’label’ contrast-specification < , contrast-specification > < , . . . > < / options > ;
COVTEST < ’label’ > < test-specification > < / options > ;
EFFECT effect-specification ;
ESTIMATE ’label’ contrast-specification < (divisor=n) >

< , ’label’ contrast-specification < (divisor=n) > > < , . . . > < / options > ;
FREQ variable ;
ID variables ;
LSMEANS fixed-effects < / options > ;
LSMESTIMATE fixed-effect < ’label’ > values < divisor=n >

< , < ’label’ > values < divisor=n > > < , . . . > < / options > ;
MODEL response< (response-options) > = < fixed-effects > < / model-options > ;
MODEL events/trials = < fixed-effects > < / model-options > ;
NLOPTIONS < options > ;
OUTPUT < OUT=SAS-data-set >

< keyword< (keyword-options) > < =name > > . . .
< keyword< (keyword-options) > < =name > > < / options > ;

PARMS (value-list). . . < / options > ;
RANDOM random-effects < / options > ;
SLICE model-effect < / options > ;
STORE < OUT= >item-store-name < / LABEL=‘label’ > ;
WEIGHT variable ;
Programming statements ;

The CLASS, CONTRAST, COVTEST, EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE, RANDOM
and SLICE statements and the programming statements can appear multiple times. The PROC GLIMMIX
and MODEL statements are required, and the MODEL statement must appear after the CLASS statement if
a CLASS statement is included. The EFFECT statements must appear before the MODEL statement.

The SLICE statement is also available in many other procedures. A summary description of functionality
and syntax for this statement is given in this chapter. You can find full documentation in the section “SLICE
Statement” on page 498 of Chapter 19, “Shared Concepts and Topics.”

PROC GLIMMIX Statement
PROC GLIMMIX < options > ;

The PROC GLIMMIX statement invokes the GLIMMIX procedure. Table 41.1 summarizes the options
available in the PROC GLIMMIX statement. These and other options in the PROC GLIMMIX statement
are then described fully in alphabetical order.
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Table 41.1 PROC GLIMMIX Statement Options

Option Description

Basic Options
DATA= Specifies the input data set
METHOD= Determines estimation method
NOFIT Does not fit the model
NOPROFILE Includes scale parameter in optimization
NOREML Determines computation of scale parameters in GLM models
ORDER= Determines the sort order of CLASS variables
OUTDESIGN Writes X and/or Z matrices to a SAS data set
PROFILE Profile scale parameters from the optimization

Displayed Output
ASYCORR Displays the asymptotic correlation matrix of the covariance pa-

rameter estimates
ASYCOV Displays the asymptotic covariance matrix of the covariance pa-

rameter estimates
GRADIENT Displays the gradient of the objective function with respect to the

parameter estimates
HESSIAN Displays the Hessian matrix
ITDETAILS Adds estimates and gradients to the “Iteration History”
NAMELEN= Specifies the length of long effect names
NOBSDETAIL Shows data exclusions
NOCLPRINT Suppresses “Class Level Information” completely or in part
ODDSRATIO Requests odds ratios
PLOTS Produces ODS statistical graphics
SUBGRADIENT Writes subject-specific gradients to a SAS data set

Optimization Options
MAXOPT= Specifies the number of optimizations

Computational Options
CHOLESKY Constructs and solves mixed model equations using the Cholesky

root of the G matrix
EMPIRICAL Computes empirical (“sandwich”) estimators
EXPHESSIAN Uses the expected Hessian matrix to compute the covariance ma-

trix of nonprofiled parameters
INFOCRIT Affects the computation of information criteria
INITGLM Uses fixed-effects starting values via generalized linear model
INITITER= Sets the number of initial GLM steps
NOBOUND Unbounds the covariance parameter estimates
NOINITGLM Does not use fixed-effects starting values via generalized linear

model
SCORING= Applies Fisher scoring where applicable
SCOREMOD Bases the Hessian matrix in GLMMs on a modified scoring

algorithm
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Table 41.1 continued

Option Description

Singularity Tolerances
ABSPCONV= Determines the absolute parameter estimate convergence criterion

for PL
FDIGITS= Specifies significant digits in computing objective function
PCONV= Specifies the relative parameter estimate convergence criterion for

PL
SINGCHOL= Tunes singularity for Cholesky decompositions
SINGRES= Tunes singularity for the residual variance
SINGULAR= Tunes general singularity criterion

Debugging Output
LIST Lists model program and variables

You can specify the following options in the PROC GLIMMIX statement.

ABSPCONV=r
specifies an absolute parameter estimate convergence criterion for doubly iterative estimation meth-
ods. For such methods, the GLIMMIX procedure by default examines the relative change in parame-
ter estimates between optimizations (see PCONV=). The purpose of the ABSPCONV= criterion is to
stop the process when the absolute change in parameter estimates is less than the tolerance criterion
r. The criterion is based on fixed effects and covariance parameters.

Note that this convergence criterion does not affect the convergence criteria applied within any in-
dividual optimization. In order to change the convergence behavior within an optimization, you can
change the ABSCONV=, ABSFCONV=, ABSGCONV=, ABSXCONV=, FCONV=, or GCONV=
option in the NLOPTIONS statement.

ASYCORR
produces the asymptotic correlation matrix of the covariance parameter estimates. It is computed
from the corresponding asymptotic covariance matrix (see the description of the ASYCOV option,
which follows).

ASYCOV
requests that the asymptotic covariance matrix of the covariance parameter estimates be displayed.
By default, this matrix is the observed inverse Fisher information matrix, which equals mH�1, where
H is the Hessian (second derivative) matrix of the objective function. The factor m equals 1 in a GLM
and equals 2 in a GLMM.

When you use the SCORING= option and PROC GLIMMIX converges without stopping the scoring
algorithm, the procedure uses the expected Hessian matrix to compute the covariance matrix instead
of the observed Hessian. Regardless of whether a scoring algorithm is used or the number of scoring
iterations has been exceeded, you can request that the asymptotic covariance matrix be based on the
expected Hessian with the EXPHESSIAN option in the PROC GLIMMIX statement. If a residual
scale parameter is profiled from the likelihood equation, the asymptotic covariance matrix is adjusted
for the presence of this parameter; details of this adjustment process are found in Wolfinger, Tobias,
and Sall (1994) and in the section “Estimated Precision of Estimates” on page 3056.
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CHOLESKY

CHOL
requests that the mixed model equations be constructed and solved by using the Cholesky root of the
G matrix. This option applies only to estimation methods that involve mixed model equations. The
Cholesky root algorithm has greater numerical stability but also requires more computing resources.
When the estimated G matrix is not positive definite during a particular function evaluation, PROC
GLIMMIX switches to the Cholesky algorithm for that evaluation and returns to the regular algorithm
if bG becomes positive definite again. When the CHOLESKY option is in effect, the procedure applies
the algorithm all the time.

DATA=SAS-data-set
names the SAS data set to be used by PROC GLIMMIX. The default is the most recently created data
set.

EMPIRICAL< =CLASSICAL | HC0 >

EMPIRICAL< =DF | HC1 >

EMPIRICAL< =MBN< (mbn-options) > >

EMPIRICAL< =ROOT | HC2 >

EMPIRICAL< =FIRORES | HC3 >

EMPIRICAL< =FIROEEQ< (r ) > >
requests that the covariance matrix of the parameter estimates be computed as one of the asymptot-
ically consistent estimators, known as sandwich or empirical estimators. The name stems from the
layering of the estimator. An empirically based estimate of the inverse variance of the parameter
estimates (the “meat”) is wrapped by the model-based variance estimate (the “bread”).

Empirical estimators are useful for obtaining inferences that are not sensitive to the choice of the
covariance model. In nonmixed models, they can help, for example, to allay the effects of vari-
ance heterogeneity on the tests of fixed effects. Empirical estimators can coarsely be grouped into
likelihood-based and residual-based estimators. The distinction arises from the components used to
construct the “meat” and “bread” of the estimator. If you specify the EMPIRICAL option without fur-
ther qualifiers, the GLIMMIX procedure computes the classical sandwich estimator in the appropriate
category.

Likelihood-Based Estimator

Let H.˛/ denote the second derivative matrix of the log likelihood for some parameter vector ˛, and
let gi .˛/ denote the gradient of the log likelihood with respect to ˛ for the ith of m independent sam-
pling units. The gradient for the entire data is

Pm
iD1 gi .˛/. A sandwich estimator for the covariance

matrix of b̨ can then be constructed as (White 1982)

H.b̨/�1  mX
iD1

gi .b̨/gi .b̨/0!H.b̨/�1
If you fit a mixed model by maximum likelihood with Laplace or quadrature approximation
(METHOD=LAPLACE, METHOD=QUAD), the GLIMMIX procedure constructs this likelihood-
based estimator when you choose EMPIRICAL=CLASSICAL. If you choose EMPIRICAL=MBN,
the likelihood-based sandwich estimator is further adjusted (see the section “Design-Adjusted MBN
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Estimator” on page 3079 for details). Because Laplace and quadrature estimation in GLIMMIX in-
cludes the fixed-effects parameters and the covariance parameters in the optimization, this empirical
estimator adjusts the covariance matrix of both types of parameters. The following empirical esti-
mators are not available with METHOD=LAPLACE or with METHOD=QUAD: EMPIRICAL=DF,
EMPIRICAL=ROOT, EMPIRICAL=FIRORES, and EMPIRICAL=FIROEEQ.

Residual-Based Estimators

For a general model, let Y denote the response with mean � and variance †, and let D be the matrix
of first derivatives of � with respect to the fixed effects ˇ. The classical sandwich estimator (Huber
1967; White 1980) is

b� mX
iD1

bD0ib†�1i eie0ib†�1i bDi! b�
where� D .D0†�1D/�, ei D yi �b�i , and m denotes the number of independent sampling units.

Since the expected value of eie0i does not equal†i , the classical sandwich estimator is biased, partic-
ularly if m is small. The estimator tends to underestimate the variance of b̌. The EMPIRICAL=DF,
ROOT, FIRORES, FIROEEQ, and MBN estimators are bias-corrected sandwich estimators. The DF
estimator applies a simple sample size adjustment. The ROOT, FIRORES, and FIROEEQ estima-
tors are based on Taylor series approximations applied to residuals and estimating equations. For
uncorrelated data, the EMPIRICAL=FIRORES estimator can be motivated as a jackknife estimator.

In the case of a linear regression model, the various estimators reduce to the heteroscedasticity-
consistent covariance matrix estimators (HCMM) of White (1980) and MacKinnon and White (1985).
The classical estimator, HC0, was found to perform poorly in small samples. Based on simulations in
regression models, MacKinnon and White (1985) and Long and Ervin (2000) strongly recommend the
HC3 estimator. The sandwich estimators computed by the GLIMMIX procedure can be viewed as an
extension of the HC0—HC3 estimators of MacKinnon and White (1985) to accommodate nonnormal
data and correlated observations.

The MBN estimator, introduced as a residual-based estimator (Morel 1989; Morel, Bokossa, and
Neerchal 2003), applies an additive adjustment to the residual crossproduct. It is controlled by three
suboptions. The valid mbn-options are as follows: a sample size adjustment is applied when the DF
suboption is in effect. The NODF suboption suppresses this component of the adjustment. The lower
bound of the design effect parameter 0 � r � 1 can be specified with the R= option. The magnitude
of Morel’s ı parameter is partly determined with the D= option (d � 1).

For details about the general expression for the residual-based estimators and their relationship, see
the section “Empirical Covariance (“Sandwich”) Estimators” on page 3078. The MBN estimator
and its parameters are explained for residual- and likelihood-based estimators in the section “Design-
Adjusted MBN Estimator” on page 3079.

The EMPIRICAL=DF estimator applies a simple, multiplicative correction factor to the classical
estimator (Hinkley 1977). This correction factor is

c D

�
m=.m � k/ m > k

1 otherwise
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where k is the rank of X, and m equals the sum of all frequencies when PROC GLIMMIX is in GLM
mode and equals the number of subjects in GLMM mode. For example, the following statements fit
an overdispersed GLM:

proc glimmix empirical;
model y = x;
random _residual_;

run;

PROC GLIMMIX is in GLM mode, and the individual observations are the independent sampling
units from which the sandwich estimator is constructed. If you use a SUBJECT= effect in the RAN-
DOM statement, however, the procedure fits the model in GLMM mode and the subjects represent the
sampling units in the construction of the sandwich estimator. In other words, the following statements
fit a GEE-type model with independence working covariance structure and subjects (clusters) defined
by the levels of ID:

proc glimmix empirical;
class id;
model y = x;
random _residual_ / subject=id type=vc;

run;

See the section “GLM Mode or GLMM Mode” on page 3067 for information about how the GLIM-
MIX procedure determines the estimation mode.

The EMPIRICAL=ROOT estimator is based on the residual approximation in Kauermann and Car-
roll (2001), and the EMPIRICAL=FIRORES estimator is based on the approximation in Mancl and
DeRouen (2001). The Kauermann and Carroll estimator requires the inverse square root of a nonsym-
metric matrix. This square root matrix is obtained from the singular value decomposition in PROC
GLIMMIX, and thus this sandwich estimator is computationally more demanding than others. In the
linear regression case, the Mancl-DeRouen estimator can be motivated as a jackknife estimator, based
on the “leave-one-out” estimates of b̌; see MacKinnon and White (1985) for details.

The EMPIRICAL=FIROEEQ estimator is based on approximating an unbiased estimating equation
(Fay and Graubard 2001). It is computationally less demanding than the estimator of Kauermann and
Carroll (2001) and, in certain balanced cases, gives identical results. The optional number 0 � r < 1
is chosen to provide an upper bound on the correction factor. The default value for r is 0.75.

When you specify the EMPIRICAL option with a residual-based estimator, PROC GLIMMIX adjusts
all standard errors and test statistics involving the fixed-effects parameters.

Sampling Units

Computation of an empirical variance estimator requires that the data can be processed by independent
sampling units. This is always the case in GLMs. In this case, m, the number of independent units,
equals the sum of the frequencies used in the analysis (see “Number of Observations” table). In
GLMMs, empirical estimators can be computed only if the data comprise more than one subject as
per the “Dimensions” table. See the section “Processing by Subjects” on page 3082 for information
about how the GLIMMIX procedure determines whether the data can be processed by subjects. If a
GLMM comprises only a single subject for a particular BY group, the model-based variance estimator
is used instead of the empirical estimator, and a message is written to the log.
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EXPHESSIAN
requests that the expected Hessian matrix be used in computing the covariance matrix of the nonpro-
filed parameters. By default, the GLIMMIX procedure uses the observed Hessian matrix in computing
the asymptotic covariance matrix of covariance parameters in mixed models and the covariance ma-
trix of fixed effects in models without random effects. The EXPHESSIAN option is ignored if the
(conditional) distribution is not a member of the exponential family or is unknown. It is also ignored
in models for nominal data.

FDIGITS=r
specifies the number of accurate digits in evaluations of the objective function. Fractional values are
allowed. The default value is r D � log10 �, where � is the machine precision. The value of r is used
to compute the interval size for the computation of finite-difference approximations of the derivatives
of the objective function. It is also used in computing the default value of the FCONV= option in the
NLOPTIONS statement.

GRADIENT
displays the gradient of the objective function with respect to the parameter estimates in the “Covari-
ance Parameter Estimates” table and/or the “Parameter Estimates” table.

HESSIAN

HESS

H
displays the Hessian matrix of the optimization.

INFOCRIT=NONE | PQ | Q

IC=NONE | PQ | Q
determines the computation of information criteria in the “Fit Statistics” table. The GLIMMIX pro-
cedure computes various information criteria that typically apply a penalty to the (possibly restricted)
log likelihood, log pseudo-likelihood, or log quasi-likelihood that depends on the number of param-
eters and/or the sample size. If IC=NONE, these criteria are suppressed in the “Fit Statistics” table.
This is the default for models based on pseudo-likelihoods.

The AIC, AICC, BIC, CAIC, and HQIC fit statistics are various information criteria. AIC and
AICC represent Akaike’s information criteria (Akaike 1974) and a small sample bias corrected ver-
sion thereof (for AICC, see Hurvich and Tsai 1989; Burnham and Anderson 1998). BIC represents
Schwarz’s Bayesian criterion (Schwarz 1978). Table 41.2 gives formulas for the criteria.

Table 41.2 Information Criteria

Criterion Formula Reference

AIC �2`C 2d Akaike (1974)

AICC �2`C 2dn�=.n� � d � 1/ Hurvich and Tsai (1989)
Burnham and Anderson (1998)

HQIC �2`C 2d log log n Hannan and Quinn (1979)

BIC �2`C d log n Schwarz (1978)

CAIC �2`C d.log nC 1/ Bozdogan (1987)
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Here, ` denotes the maximum value of the (possibly restricted) log likelihood, log pseudo-likelihood,
or log quasi-likelihood, d is the dimension of the model, and n, n� reflect the size of the data.

The IC=PQ option requests that the penalties include the number of fixed-effects parameters,
when estimation in models with random effects is based on a residual (restricted) likelihood. For
METHOD=MSPL, METHOD=MMPL, METHOD=LAPLACE, and METHOD=QUAD, IC=Q and
IC=PQ produce the same results. IC=Q is the default for linear mixed models with normal errors, and
the resulting information criteria are identical to the IC option in the MIXED procedure.

The quantities d, n, and n� depend on the model and IC= option in the following way:

GLM: IC=Q and IC=PQ options have no effect on the computation.

� d equals the number of parameters in the optimization whose solutions do
not fall on the boundary or are otherwise constrained. The scale parameter is
included, if it is part of the optimization. If you use the PARMS statement to
place a hold on a scale parameter, that parameter does not count toward d.

� n equals the sum of the frequencies (f ) for maximum likelihood and quasi-
likelihood estimation and f � rank.X/ for restricted maximum likelihood
estimation.

� n� equals n, unless n < d C 2, in which case n� D d C 2.

GLMM, IC=Q: � d equals the number of effective covariance parameters—that is, covariance
parameters whose solution does not fall on the boundary. For estimation of
an unrestricted objective function (METHOD=MMPL, METHOD=MSPL,
METHOD=LAPLACE, METHOD=QUAD), this value is incremented by
rank.X/.

� n equals the effective number of subjects as displayed in the “Dimensions”
table, unless this value equals 1, in which case n equals the number of levels of
the first G-side RANDOM effect specified. If the number of effective subjects
equals 1 and there are no G-side random effects, n is determined as

n D

�
f � rank.X/ METHOD D RMPL;METHOD D RSPL
f otherwise

where f is the sum of frequencies used.
� n� equals f or f � rank.X/ (for METHOD=RMPL and METHOD=RSPL),

unless this value is less than d C 2, in which case n� D d C 2.

GLMM, IC=PQ: For METHOD=MSPL, METHOD=MMPL, METHOD=LAPLACE, and
METHOD=QUAD, the results are the same as for IC=Q. For METHOD=RSPL
and METHOD=RMPL, d equals the number of effective covariance parameters
plus rank.X/, and n D n� equals f � rank.X/. The formulas for the information
criteria thus agree with Verbeke and Molenberghs (2000, Table 6.7, p. 74) and
Vonesh and Chinchilli (1997, p. 263).

INITGLM
requests that the estimates from a generalized linear model fit (a model without random effects) be
used as the starting values for the generalized linear mixed model. This option is the default for
METHOD=LAPLACE and METHOD=QUAD.
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INITITER=number
specifies the maximum number of iterations used when a generalized linear model is fit initially to
derive starting values for the fixed effects; see the INITGLM option. By default, the initial fit involves
at most four iteratively reweighted least squares updates. You can change the upper limit of initial
iterations with number. If the model does not contain random effects, this option has no effect.

ITDETAILS
adds parameter estimates and gradients to the “Iteration History” table.

LIST
requests that the model program and variable lists be displayed. This is a debugging feature and is not
normally needed. When you use programming statements to define your statistical model, this option
enables you to examine the complete set of statements submitted for processing. See the section
“Programming Statements” for more details about how to use SAS statements with the GLIMMIX
procedure.

MAXLMMUPDATE=number

MAXOPT=number
specifies the maximum number of optimizations for doubly iterative estimation methods based on
linearizations. After each optimization, a new pseudo-model is constructed through a Taylor series
expansion. This step is known as the linear mixed model update. The MAXLMMUPDATE option
limits the number of updates and thereby limits the number of optimizations. If this option is not
specified, number is set equal to the value specified in the MAXITER= option in the NLOPTIONS
statement. If no MAXITER= value is given, number defaults to 20.

METHOD=RSPL

METHOD=MSPL

METHOD=RMPL

METHOD=MMPL

METHOD=LAPLACE

METHOD=QUAD< (quad-options) >
specifies the estimation method in a generalized linear mixed model (GLMM). The default is
METHOD=RSPL.

Pseudo-Likelihood

Estimation methods ending in “PL” are pseudo-likelihood techniques. The first letter of the
METHOD= identifier determines whether estimation is based on a residual likelihood (“R”) or a
maximum likelihood (“M”). The second letter identifies the expansion locus for the underlying ap-
proximation. Pseudo-likelihood methods for generalized linear mixed models can be cast in terms
of Taylor series expansions (linearizations) of the GLMM. The expansion locus of the expansion is
either the vector of random effects solutions (“S”) or the mean of the random effects (“M”). The ex-
pansions are also referred to as the “S”ubject-specific and “M”arginal expansions. The abbreviation
“PL” identifies the method as a pseudo-likelihood technique.

Residual methods account for the fixed effects in the construction of the objective function, which
reduces the bias in covariance parameter estimates. Estimation methods involving Taylor series cre-
ate pseudo-data for each optimization. Those data are transformed to have zero mean in a residual
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method. While the covariance parameter estimates in a residual method are the maximum likelihood
estimates for the transformed problem, the fixed-effects estimates are (estimated) generalized least
squares estimates. In a likelihood method that is not residual based, both the covariance parameters
and the fixed-effects estimates are maximum likelihood estimates, but the former are known to have
greater bias. In some problems, residual likelihood estimates of covariance parameters are unbiased.

For more information about linearization methods for generalized linear mixed models, see the section
“Pseudo-likelihood Estimation Based on Linearization” on page 3054.

Maximum Likelihood with Laplace Approximation

If you choose METHOD=LAPLACE with a generalized linear mixed model, PROC GLIMMIX ap-
proximates the marginal likelihood by using Laplace’s method. Twice the negative of the resulting
log-likelihood approximation is the objective function that the procedure minimizes to determine
parameter estimates. Laplace estimates typically exhibit better asymptotic behavior and less small-
sample bias than pseudo-likelihood estimators. On the other hand, the class of models for which a
Laplace approximation of the marginal log likelihood is available is much smaller compared to the
class of models to which PL estimation can be applied.

To determine whether Laplace estimation can be applied in your model, consider the marginal distri-
bution of the data in a mixed model

p.y/ D
Z
p.yj
/ p.
/ d


D

Z
exp flogfp.yj
/g C logfp.
/gg d


D

Z
exp fnf .y;
/g d


The function f .y;
/ plays an important role in the Laplace approximation: it is a function of the
joint distribution of the data and the random effects (see the section “Maximum Likelihood Estima-
tion Based on Laplace Approximation” on page 3059). In order to construct a Laplace approximation,
PROC GLIMMIX requires a conditional log-likelihood logfp.yj
/g as well as the distribution of the
G-side random effects. The random effects are always assumed to be normal with zero mean and co-
variance structure determined by the RANDOM statement. The conditional distribution is determined
by the DIST= option of the MODEL statement or the default associated with a particular response
type. Because a valid conditional distribution is required, R-side random effects are not permitted
for METHOD=LAPLACE in the GLIMMIX procedure. In other words, the GLIMMIX procedure
requires for METHOD=LAPLACE conditional independence without R-side overdispersion or co-
variance structure.

Because the marginal likelihood of the data is approximated numerically, certain features of the
marginal distribution are not available—for example, you cannot display a marginal variance-
covariance matrix. Also, the procedure includes both the fixed-effects parameters and the covariance
parameters in the optimization for Laplace estimation. Consequently, this setting imposes some re-
strictions with respect to available options for Laplace estimation. Table 41.3 lists the options that are
assumed for METHOD=LAPLACE, and Table 41.4 lists the options that are not compatible with this
estimation method.

The section “Maximum Likelihood Estimation Based on Laplace Approximation” contains details
about Laplace estimation in PROC GLIMMIX.
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Maximum Likelihood with Adaptive Quadrature

If you choose METHOD=QUAD in a generalized linear mixed model, the GLIMMIX procedure ap-
proximates the marginal log likelihood with an adaptive Gauss-Hermite quadrature. Compared to
METHOD=LAPLACE, the models for which parameters can be estimated by quadrature are further
restricted. In addition to the conditional independence assumption and the absence of R-side co-
variance parameters, it is required that models suitable for METHOD=QUAD can be processed by
subjects. (See the section “Processing by Subjects” on page 3082 about how the GLIMMIX procedure
determines whether the data can be processed by subjects.) This in turn requires that all RANDOM
statements have SUBJECT= effects and in the case of multiple SUBJECT= effects that these form a
containment hierarchy.

In a containment hierarchy each effect is contained by another effect, and the effect contained by all is
considered “the” effect for subject processing. For example, the SUBJECT= effects in the following
statements form a containment hierarchy:

proc glimmix;
class A B block;
model y = A B A*B;
random intercept / subject=block;
random intercept / subject=A*block;

run;

The block effect is contained in the A*block interaction and the data are processed by block. The
SUBJECT= effects in the following statements do not form a containment hierarchy:

proc glimmix;
class A B block;
model y = A B A*B;
random intercept / subject=block;
random block / subject=A;

run;

The section “Maximum Likelihood Estimation Based on Adaptive Quadrature” on page 3062 con-
tains important details about the computations involved with quadrature approximations. The section
“Aspects Common to Adaptive Quadrature and Laplace Approximation” on page 3064 contains in-
formation about issues that apply to Laplace and adaptive quadrature, such as the computation of the
prediction variance matrix and the determination of starting values.

You can specify the following quad-options for METHOD=QUAD in parentheses:

EBDETAILS
reports details about the empirical Bayes suboptimization process should this suboptimization
fail.

EBSSFRAC=r
specifies the step-shortening fraction to be used while computing empirical Bayes estimates of
the random effects. The default value is r = 0.8, and it is required that r > 0.
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EBSSTOL=r
specifies the objective function tolerance for determining the cessation of step shortening while
computing empirical Bayes estimates of the random effects, r � 0. The default value is r=1E–8.

EBSTEPS=n
specifies the maximum number of Newton steps for computing empirical Bayes estimates of
random effects, n � 0. The default value is n=50.

EBSUBSTEPS=n
specifies the maximum number of step shortenings for computing empirical Bayes estimates of
random effects. The default value is n=20, and it is required that n � 0.

EBTOL=r
specifies the convergence tolerance for empirical Bayes estimation, r � 0. The default value is
r D � � 1E4, where � is the machine precision. This default value equals approximately 1E–12
on most machines.

INITPL=number
requests that adaptive quadrature commence after performing up to number pseudo-likelihood
updates. The initial pseudo-likelihood (PL) steps (METHOD=MSPL) can be useful to provide
good starting values for the quadrature algorithm. If you choose number large enough so that
the initial PL estimation converges, the process is equivalent to starting a quadrature from the
PL estimates of the fixed-effects and covariance parameters. Because this also makes available
the PL random-effects solutions, the adaptive step of the quadrature that determines the number
of quadrature points can take this information into account.

Note that you can combine the INITPL option with the NOINITGLM option in the PROC
GLIMMIX statement to define a precise path for starting value construction to the GLIMMIX
procedure. For example, the following statement generates starting values in these steps:

proc glimmix method=quad(initpl=5);

1. A GLM without random effects is fit initially to obtain as starting values for the fixed
effects. The INITITER= option in the PROC GLIMMIX statement controls the number of
iterations in this step.

2. Starting values for the covariance parameters are then obtained by MIVQUE0 estimation
(Goodnight 1978a), using the fixed-effects parameter estimates from step 1.

3. With these values up to five pseudo-likelihood updates are computed.
4. The PL estimates for fixed-effects, covariance parameters, and the solutions for the random

effects are then used to determine the number of quadrature points and used as the starting
values for the quadrature.

The first step (GLM fixed-effects estimates) is omitted, if you modify the previous statement as
follows:

proc glimmix method=quad(initpl=5) noinitglm;

The NOINITGLM option is the default of the pseudo-likelihood methods you select with the
METHOD= option.
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QCHECK
performs an adaptive recalculation of the objective function (–2 log likelihood) at the solution.
The increment of the quadrature points, starting from the number of points used in the opti-
mization, follows the same rules as the determination of the quadrature point sequence at the
starting values (see the QFAC= and QMAX= suboptions). For example, the following statement
estimates the parameters based on a quadrature with seven nodes in each dimension:

proc glimmix method=quad(qpoints=7 qcheck);

Because the default search sequence is 1; 3; 5; 7; 9; 11; 21; 31, the QCHECK option computes
the –2 log likelihood at the converged solution for 9; 11; 21; and 31 quadrature points and re-
ports relative differences to the converged value and among successive values. The ODS table
produced by this option is named “QuadCheck.”

CAUTION: This option is useful to diagnose the sensitivity of the likelihood approximation at
the solution. It does not diagnose the stability of the solution under changes in the number of
quadrature points. For example, if increasing the number of points from 7 to 9 does not alter the
objective function, this does not imply that a quadrature with 9 points would arrive at the same
parameter estimates as a quadrature with 7 points.

QFAC=r
determines the step size for the quadrature point sequence. If the GLIMMIX procedure de-
termines the quadrature nodes adaptively, the log likelihoods are computed for nodes in a pre-
determined sequence. If Nmin and Nmax denote the values from the QMIN= and QMAX=
suboptions, respectively, the sequence for values less than 11 is constructed in increments of
2 starting at Nmin . Values greater than 11 are incremented in steps of r. The default value is
r=10. The default sequence, without specifying the QMIN=, QMAX=, or QFAC= option, is thus
1; 3; 5; 7; 9; 11; 21; 31. By contrast, the following statement evaluates the sequence 8; 10; 30; 50:

proc glimmix method=quad(qmin=8,qmax=51,qfac=20);

QMAX=n
specifies an upper bound for the number of quadrature points. The default is n=31.

QMIN=n
specifies a lower bound for the number of quadrature points. The default is n=1 and the value
must be less than the QMAX= value.

QPOINTS=n
determines the number of quadrature points in each dimension of the integral. Note that if there
are r random effects for each subject, the GLIMMIX procedure evaluates nr conditional log
likelihoods for each observation to compute one value of the objective function. Increasing the
number of quadrature nodes can substantially increase the computational burden. If you choose
QPOINTS=1, the quadrature approximation reduces to the Laplace approximation. If you do not
specify the number of quadrature points, it is determined adaptively by increasing the number
of nodes at the starting values. See the section “Aspects Common to Adaptive Quadrature and
Laplace Approximation” on page 3064 for details.
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QTOL=r
specifies a relative tolerance criterion for the successive evaluation of log likelihoods for dif-
ferent numbers of quadrature points. When the GLIMMIX procedure determines the number
of quadrature points adaptively, the number of nodes are increased until the QMAX=n limit is
reached or until two successive evaluations of the log likelihood have a relative change of less
than r. In the latter case, the lesser number of quadrature nodes is used for the optimization.

The EBSSFRAC, EBSSTOL, EBSTEPS, EBSUBSTEPS, and EBTOL suboptions affect the subop-
timization that leads to the empirical Bayes estimates of the random effects. Under normal circum-
stances, there is no reason to change from the default values. When the sub-optimizations fail, the
optimization process can come to a halt. If the EBDETAILS option is in effect, you might be able to
determine why the suboptimization fails and then adjust these values accordingly.

The QMIN, QMAX, QTOL, and QFAC suboptions determine the quadrature point search sequence
for the adaptive component of estimation.

As for METHOD=LAPLACE, certain features of the marginal distribution are not available because
the marginal likelihood of the data is approximated numerically. For example, you cannot display
a marginal variance-covariance matrix. Also, the procedure includes both the fixed-effects and co-
variance parameters in the optimization for quadrature estimation. Consequently, this setting imposes
some restrictions with respect to available options. Table 41.3 lists the options that are assumed for
METHOD=QUAD and METHOD=LAPLACE, and Table 41.4 lists the options that are not compati-
ble with these estimation methods.

Table 41.3 Defaults for METHOD=LAPLACE and METHOD=QUAD

Statement Option

PROC GLIMMIX NOPROFILE
PROC GLIMMIX INITGLM
MODEL NOCENTER

Table 41.4 Options Incompatible with METHOD=LAPLACE and METHOD=QUAD

Statement Option

PROC GLIMMIX EXPHESSIAN
PROC GLIMMIX SCOREMOD
PROC GLIMMIX SCORING
PROC GLIMMIX PROFILE
MODEL DDFM=KENWARDROGER
MODEL DDFM=SATTERTHWAITE
MODEL STDCOEF
RANDOM RESIDUAL
RANDOM _RESIDUAL_ All R-side random effects
RANDOM V
RANDOM VC
RANDOM VCI
RANDOM VCORR
RANDOM VI
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In addition to the options displayed in Table 41.4, the NOBOUND option in the PROC GLIMMIX
and the NOBOUND option in the PARMS statements are not available with METHOD=QUAD. Un-
bounding the covariance parameter estimates is possible with METHOD=LAPLACE, however.

No Random Effects Present

If the model does not contain G-side random effects or contains only a single overdispersion com-
ponent, then the model belongs to the family of (overdispersed) generalized linear models if the
distribution is known or the quasi-likelihood models for independent data if the distribution is not
known. The GLIMMIX procedure then estimates model parameters by the following techniques:

� normally distributed data: residual maximum likelihood

� nonnormal data: maximum likelihood

� data with unknown distribution: quasi-likelihood

The METHOD= specification then has only an effect with respect to the divisor used in estimating
the overdispersion component. With a residual method, the divisor is f – k, where f denotes the sum
of the frequencies and k is the rank of X. Otherwise, the divisor is f.

NAMELEN=number
specifies the length to which long effect names are shortened. The default and minimum value is 20.

NOBOUND
requests the removal of boundary constraints on covariance and scale parameters in mixed models.
For example, variance components have a default lower boundary constraint of 0, and the NOBOUND
option allows their estimates to be negative.

The NOBOUND option cannot be used for adaptive quadrature estimation with METHOD=QUAD.
The scaling of the quadrature abscissas requires an inverse Cholesky root that is possibly not well
defined when the G matrix of the mixed model is negative definite or indefinite. The Laplace approx-
imation (METHOD=LAPLACE) is not subject to this limitation.

NOBSDETAIL
adds detailed information to the “Number of Observations” table to reflect how many observations
were excluded from the analysis and for which reason.

NOCLPRINT< =number >
suppresses the display of the “Class Level Information” table, if you do not specify number. If you
specify number, only levels with totals that are less than number are listed in the table.

NOFIT
suppresses fitting of the model. When the NOFIT option is in effect, PROC GLIMMIX produces
the “Model Information,” “Class Level Information,” “Number of Observations,” and “Dimensions”
tables. These can be helpful to gauge the computational effort required to fit the model. For example,
the “Dimensions” table informs you as to whether the GLIMMIX procedure processes the data by
subjects, which is typically more computationally efficient than processing the data as a single subject.
See the section “Processing by Subjects” for more information.

If you request a radial smooth with knot selection by k-d tree methods, PROC GLIMMIX also com-
putes the knot locations of the smoother. You can then examine the knots without fitting the model.
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This enables you to try out different knot construction methods and bucket sizes. See the KNOT-
METHOD=KDTREE option (and its suboptions) of the RANDOM statement.

If you combine the NOFIT option with the OUTDESIGN option, you can write the X and/or Z matrix
of your model to a SAS data set without fitting the model.

NOINITGLM
requests that the starting values for the fixed effects not be obtained by first fitting a generalized linear
model. This option is the default for the pseudo-likelihood estimation methods and for the linear
mixed model. For the pseudo-likelihood methods, starting values can be implicitly defined based on
an initial pseudo-data set derived from the data and the link function. For linear mixed models, starting
values for the fixed effects are not necessary. The NOINITGLM option is useful in conjunction with
the INITPL= suboption of METHOD=QUAD in order to perform initial pseudo-likelihood steps prior
to an adaptive quadrature.

NOITPRINT
suppresses the display of the “Iteration History” table.

NOPROFILE
includes the scale parameter � into the optimization for models that have such a parameter (see Ta-
ble 41.19). By default, the GLIMMIX procedure profiles scale parameters from the optimization in
mixed models. In generalized linear models, scale parameters are not profiled.

NOREML
determines the denominator for the computation of the scale parameter in a GLM for normal data and
for overdispersion parameters. By default, the GLIMMIX procedure computes the scale parameter
for the normal distribution as

b� D nX
iD1

fi .yi �byi /2
f � k

where k is the rank of X, fi is the frequency associated with the ith observation, and f D
P
fi .

Similarly, the overdispersion parameter in an overdispersed GLM is estimated by the ratio of the
Pearson statistic and .f � k/. If the NOREML option is in effect, the denominators are replaced by
f, the sum of the frequencies. In a GLM for normal data, this yields the maximum likelihood estimate
of the error variance. For this case, the NOREML option is a convenient way to change from REML
to ML estimation.

In GLMM models fit by pseudo-likelihood methods, the NOREML option changes the estimation
method to the nonresidual form. See the METHOD= option for the distinction between residual and
nonresidual estimation methods.

ODDSRATIO
OR

requests that odds ratios be added to the output when applicable. Odds ratios and their confidence
limits are reported only for models with logit, cumulative logit, or generalized logit link. Specify-
ing the ODDSRATIO option in the PROC GLIMMIX statement has the same effect as specifying
the ODDSRATIO option in the MODEL statement and in all LSMEANS statements. Note that the
ODDSRATIO option in the MODEL statement has several suboptions that enable you to construct
customized odds ratios. These suboptions are available only through the MODEL statement. For de-
tails about the interpretation and computation of odds and odds ratios with the GLIMMIX procedure,
see the section “Odds and Odds Ratio Estimation” on page 3090.
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ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the classification variables (which are specified in the CLASS
statement). This ordering determines which parameters in the model correspond to each level in the
data, so the ORDER= option can be useful when you use CONTRAST or ESTIMATE statements.
This option applies to the levels for all classification variables, except when you use the (default)
ORDER=FORMATTED option with numeric classification variables that have no explicit format.
With this option, the levels of such variables are ordered by their internal value.

The ORDER= option can take the following values:

Value of ORDER= Levels Sorted By

DATA Order of appearance in the input data set

FORMATTED External formatted value, except for numeric variables
with no explicit format, which are sorted by their unfor-
matted (internal) value

FREQ Descending frequency count; levels with the most obser-
vations come first in the order

INTERNAL Unformatted value

By default, ORDER=FORMATTED. For ORDER=FORMATTED and ORDER=INTERNAL, the
sort order is machine-dependent.

When the response variable appears in a CLASS statement, the ORDER= option in the PROC GLIM-
MIX statement applies to its sort order. Specification of a response-option in the MODEL statement
overrides the ORDER= option in the PROC GLIMMIX statement. For example, in the following
statements the sort order of the wheeze variable is determined by the formatted value (default):

proc glimmix order=data;
class city;
model wheeze = city age / dist=binary s;

run;

The ORDER= option in the PROC GLIMMIX statement has no effect on the sort order of the wheeze
variable because it does not appear in the CLASS statement. However, in the following statements
the sort order of the wheeze variable is determined by the order of appearance in the input data set
because the response variable appears in the CLASS statement:

proc glimmix order=data;
class city wheeze;
model wheeze = city age / dist=binary s;

run;

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.
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OUTDESIGN< (options) > < =SAS-data-set >
creates a data set that contains the contents of the X and Z matrix. If the data are processed by subjects
as shown in the “Dimensions” table, then the Z matrix saved to the data set corresponds to a single
subject. By default, the GLIMMIX procedure includes in the OUTDESIGN data set the X and Z
matrix (if present) and the variables in the input data set. You can specify the following options in
parentheses to control the contents of the OUTDESIGN data set:

NAMES
produces tables associating columns in the OUTDESIGN data set with fixed-effects parameter
estimates and random-effects solutions.

NOMISS
excludes from the OUTDESIGN data set observations that were not used in the analysis.

NOVAR
excludes from the OUTDESIGN data set variables from the input data set. Variables listed in the
BY and ID statements and variables needed for identification of SUBJECT= effects are always
included in the OUTDESIGN data set.

X< =prefix >
saves the contents of the X matrix. The optional prefix is used to name the columns. The default
naming prefix is “_X”.

Z< =prefix >
saves the contents of the Z matrix. The optional prefix is used to name the columns. The default
naming prefix is “_Z”.

The order of the observations in the OUTDESIGN data set is the same as the order of the input data
set. If you do not specify a data set with the OUTDESIGN option, the procedure uses the DATAn
convention to name the data set.

PCONV=r
specifies the parameter estimate convergence criterion for doubly iterative estimation methods. The
GLIMMIX procedure applies this criterion to fixed-effects estimates and covariance parameter esti-
mates. Suppose b .u/i denotes the estimate of the ith parameter at the uth optimization. The procedure
terminates the doubly iterative process if the largest value

2 �
jb .u/i � b .u�1/i j

jb .u/i j C jb .u�1/i j

is less than r. To check an absolute convergence criteria as well, you can set the ABSPCONV= option
in the PROC GLIMMIX statement. The default value for r is 1E8 times the machine epsilon, a
product that equals about 1E–8 on most machines.

Note that this convergence criterion does not affect the convergence criteria applied within any indi-
vidual optimization. In order to change the convergence behavior within an optimization, you can use
the ABSCONV=, ABSFCONV=, ABSGCONV=, ABSXCONV=, FCONV=, or GCONV= option in
the NLOPTIONS statement.
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PLOTS < (global-plot-options) > < = plot-request < (options) > >

PLOTS < (global-plot-options) > < = (plot-request < (options) > < ... plot-request < (options) > >) >
requests that the GLIMMIX procedure produce statistical graphics via ODS Graphics.

ODS Graphics must be enabled before plots can be requested. For example:

ods graphics on;

proc glimmix data=plants;
class Block Type;
model StemLength = Block Type;
lsmeans type / diff=control plots=controlplot;

run;

ods graphics off;

For more information about enabling and disabling ODS Graphics, see the section “Enabling and
Disabling ODS Graphics” on page 600 in Chapter 21, “Statistical Graphics Using ODS.”

For examples of the basic statistical graphics produced by the GLIMMIX procedure and aspects of
their computation and interpretation, see the section “ODS Graphics” on page 3115 in this chapter.
You can also request statistical graphics for least squares means through the PLOTS option in the
LSMEANS statement, which gives you more control over the display compared to the PLOTS option
in the PROC GLIMMIX statement.

Global Plot Options

The global-plot-options apply to all relevant plots generated by the GLIMMIX procedure. The global-
plot-options supported by the GLIMMIX procedure are as follows:

OBSNO
uses the data set observation number to identify observations in tooltips, provided that the ob-
servation number can be determined. Otherwise, the number displayed in tooltips is the index
of the observation as it is used in the analysis within the BY group.

UNPACKPANEL

UNPACK
displays each graph separately. (By default, some graphs can appear together in a single panel.)

Specific Plot Options

The following listing describes the specific plots and their options.

ALL
requests that all plots appropriate for the analysis be produced. In models with G-side random
effects, residual plots are based on conditional residuals (by using the BLUPs of random effects)
on the linear (linked) scale. Plots of least squares means differences are produced for LSMEANS
statements without options that would contradict such a display.
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ANOMPLOT

ANOM
requests an analysis of means display in which least squares means are compared against an
average least squares mean (Ott 1967; Nelson 1982, 1991, 1993). See the DIFF= option in
the LSMEANS statement for the computation of this average. Least squares mean ANOM
plots are produced only for those fixed effects that are listed in LSMEANS statements that
have options that do not contradict the display. For example, if you request ANOM plots with
the PLOTS= option in the PROC GLIMMIX statement, the following LSMEANS statements
produce analysis of mean plots for effects A and C:

lsmeans A / diff=anom;
lsmeans B / diff;
lsmeans C;

The DIFF option in the second LSMEANS statement implies all pairwise differences.

When differences against the average LS-mean are adjusted for multiplicity with the AD-
JUST=NELSON option in the LSMEANS statement, the ANOMPLOT display is adjusted ac-
cordingly.

BOXPLOT < (boxplot-options) >
requests box plots for the effects in your model that consist of classification effects only. Note
that these effects can involve more than one classification variable (interaction and nested ef-
fects), but cannot contain any continuous variables. By default, the BOXPLOT request produces
box plots of (conditional) residuals for the qualifying effects in the MODEL and RANDOM
statements. See the discussion of the boxplot-options in a later section for information about
how to tune your box plot request.

CONTROLPLOT

CONTROL
requests a display in which least squares means are visually compared against a reference level.
LS-mean control plots are produced only for those fixed effects that are listed in LSMEANS
statements that have options that do not contradict with the display. For example, the following
statements produce control plots for effects A and C if you specify PLOTS=CONTROL in the
PROC GLIMMIX statement:

lsmeans A / diff=control('1');
lsmeans B / diff;
lsmeans C;

The DIFF option in the second LSMEANS statement implies all pairwise differences.

When differences against a control level are adjusted for multiplicity with the ADJUST= option
in the LSMEANS statement, the control plot display is adjusted accordingly.
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DIFFPLOT< (diffplot-options) >
DIFFOGRAM < (diffplot-options) >
DIFF< (diffplot-options) >

requests a display of all pairwise least squares mean differences and their significance. When
constructed from arithmetic means, the display is also known as a “mean-mean scatter plot”
(Hsu 1996; Hsu and Peruggia 1994). For each comparison a line segment, centered at the LS-
means in the pair, is drawn. The length of the segment corresponds to the projected width
of a confidence interval for the least squares mean difference. Segments that fail to cross the
45-degree reference line correspond to significant least squares mean differences.

If you specify the ADJUST= option in the LSMEANS statement, the lengths of the line segments
are adjusted for multiplicity.

LS-mean difference plots are produced only for those fixed effects listed in LSMEANS state-
ments that have options that do not conflict with the display. For example, the following state-
ments request differences against a control level for the A effect, all pairwise differences for the
B effect, and the least squares means for the C effect:

lsmeans A / diff=control('1');
lsmeans B / diff;
lsmeans C;

The DIFF= type in the first statement contradicts a display of all pairwise differences. Difference
plots are produced only for the B and C effects if you specify PLOTS=DIFF in the PROC
GLIMMIX statement.

You can specify the following diffplot-options. The ABS and NOABS options determine the
positioning of the line segments in the plot. When the ABS option is in effect (this is the
default) all line segments are shown on the same side of the reference line. The NOABS option
separates comparisons according to the sign of the difference. The CENTER option marks the
center point for each comparison. This point corresponds to the intersection of two least squares
means. The NOLINES option suppresses the display of the line segments that represent the
confidence bounds for the differences of the least squares means. The NOLINES option implies
the CENTER option. The default is to draw line segments in the upper portion of the plot area
without marking the center point.

MEANPLOT< (meanplot-options) >
requests a display of the least squares means of effects specified in LSMEANS statements. The
following meanplot-options affect the display. Upper and lower confidence limits are plotted
when the CL option is used. When the CLBAND option is in effect, confidence limits are
shown as bands and the means are connected. By default, least squares means are not joined
by lines. You can achieve that effect with the JOIN or CONNECT option. Least squares means
are displayed in the same order in which they appear in the “Least Squares Means” table. You
can change that order for plotting purposes with the ASCENDING and DESCENDING options.
The ILINK option requests that results be displayed on the inverse linked (the data) scale.

Note that there is also a MEANPLOT suboption of the PLOTS= option in the LSMEANS state-
ment. In addition to the meanplot-options just described, you can also specify classification
effects that give you more control over the display of interaction means through the PLOTBY=
and SLICEBY= options. To display interaction means, you typically want to use the MEAN-
PLOT option in the LSMEANS statement. For example, the next statement requests a plot in
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which the levels of A are placed on the horizontal axis and the means that belong to the same
level of B are joined by lines:

lsmeans A*B / plot=meanplot(sliceby=b join);

NONE
requests that no plots be produced.

ODDSRATIO < (oddsratioplot-options) >
requests a display of odds ratios and their confidence limits when the link function permits the
computation of odds ratios (see the ODDSRATIO option in the MODEL statement). Possible
suboptions of the ODDSRATIO plot request are described below under the heading “Odds Ratio
Plot Options.”

RESIDUALPANEL< (residualplot-options) >
requests a paneled display constructed from raw residuals. The panel consists of a plot of the
residuals against the linear predictor or predicted mean, a histogram with normal density over-
laid, a Q-Q plot, and a box plot of the residuals. The residualplot-options enable you to specify
which type of residual is being graphed. These are further discussed below under the heading
“Residual Plot Options.”

STUDENTPANEL< (residualplot-options) >
requests a paneled display constructed from studentized residuals. The same panel organization
is applied as for the RESIDUALPANEL plot type.

PEARSONPANEL< (residualplot-options) >
requests a paneled display constructed from Pearson residuals. The same panel organization is
applied as for the RESIDUALPANEL plot type.

Residual Plot Options

The residualplot-options apply to the RESIDUALPANEL, STUDENTPANEL, and PEARSON-
PANEL displays. The primary function of these options is to control which type of a residual to
display. The four types correspond to keyword-options as for output statistics in the OUTPUT
statement. The residualplot-options take on the following values:

BLUP

CONDITIONAL
uses the predictors of the random effects in computing the residual.

ILINK

NONLINEAR
computes the residual on the inverse linked scale (the data scale).

NOBLUP

MARGINAL
does not use the predictors of the random effects in computing the residual.
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NOILINK

LINEAR
computes the residual on the linked scale.

UNPACK
produces separate plots from the elements of the panel.

You can list a plot request one or more times with different options. For example, the following
statements request a panel of marginal raw residuals, individual plots generated from a panel of
the conditional raw residuals, and a panel of marginal studentized residuals:

ods graphics on;
proc glimmix plots=(ResidualPanel(marginal)

ResidualPanel(unpack conditional)
StudentPanel(marginal));

The default is to compute conditional residuals on the linear scale if the model contains G-
side random effects (BLUP NOILINK). Not all combinations of the BLUP/NOBLUP and
ILINK/NOILINK suboptions are possible for all residual types and models. For details, see
the description of output statistics for the OUTPUT statement. Pearson residuals are always
displayed against the linear predictor; all other residuals are graphed versus the linear predictor
if the NOILINK suboption is in effect (default), and against the corresponding prediction on
the mean scale if the ILINK option is in effect. See Table 41.14 for a definition of the residual
quantities and exclusions.

Box Plot Options

The boxplot-options determine whether box plots are produced for residuals or for residuals
and observed values, and for which model effects the box plots are constructed. The available
boxplot-options are as follows:

BLOCK

BLOCKLEGEND
displays levels of up to four classification variables of the box plot effect by using block
legends instead of axis tick values.

BLUP

CONDITIONAL
constructs box plots from conditional residuals—that is, residuals that use the estimated
BLUPs of random effects.

FIXED
produces box plots for all fixed effects (MODEL statement) consisting entirely of classifi-
cation variables.

GROUP
produces box plots for all GROUP= effects in RANDOM statements consisting entirely of
classification variables.
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ILINK

NONLINEAR
computes the residual on the scale of the data (the inverse linked scale).

NOBLUP

MARGINAL
constructs box plots from marginal residuals.

NOILINK

LINEAR
computes the residual on the linked scale.

NPANELPOS=number
specifies the number of box positions on the graphic and provides the capability to break
a box plot into multiple graphics. If number is negative, no balancing of the number of
boxes takes place and number is the maximum number of boxes per graphic. If number is
positive, the number of boxes per graphic is balanced. For example, suppose that variable A
has 125 levels. The following statements request that the number of boxes per plot results
be balanced and result in six plots with 18 boxes each and one plot with 17 boxes:

ods graphics on;
proc glimmix plots=boxplot(npanelpos=20);

class A;
model y = A;

run;

If number is zero (this is the default), all levels of the effect are displayed in a single plot.

OBSERVED
adds box plots of the observed data for the selected effects.

PEARSON
constructs box plots from Pearson residuals rather than from the default residuals.

PSEUDO
adds box plots of the pseudo-data for the selected effects. This option is available only for
the pseudo-likelihood estimation methods that construct pseudo-data.

RANDOM
produces box plots for all effects in RANDOM statements that consist entirely of classi-
fication variables. This does not include effects specified in the GROUP= or SUBJECT=
option of the RANDOM statements.

RAW
constructs box plots from raw residuals (observed minus predicted).

STUDENT
constructs box plots from studentized residuals rather than from the default residuals.
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SUBJECT
produces box plots for all SUBJECT= effects in RANDOM statements consisting entirely
of classification variables.

USEINDEX
uses as the horizontal axis label the index of the effect level, rather than the formatted
value(s). For classification variables with many levels or model effects that involve multiple
classification variables, the formatted values identifying the effect levels might take up too
much space as axis tick values, leading to extensive thinning. The USEINDEX option
replaces tick values constructed from formatted values with the internal level number.

By default, box plots of residuals are constructed from the raw conditional residuals (on the
linked scale) in linear mixed models and from Pearson residuals in all other models. Note
that not all combinations of the BLUP/NOBLUP and ILINK/NOILINK suboptions are possible
for all residual types and models. For details, see the description of output statistics for the
OUTPUT statement.

Odds Ratio Plot Options

The oddsratioplot-options determine the display of odds ratios and their confidence limits. The
computation of the odds ratios follows the ODDSRATIO option in the MODEL statement. The
available oddsratioplot-options are as follows:

LOGBASE= 2 | E | 10
log-scales the odds ratio axis.

NPANELPOS=n
provides the capability to break an odds ratio plot into multiple graphics having at most
jnj odds ratios per graphic. If n is positive, then the number of odds ratios per graphic is
balanced. If n is negative, then no balancing of the number of odds ratios takes place. For
example, suppose you want to display 21 odds ratios. Then NPANELPOS=20 displays two
plots, the first with 11 and the second with 10 odds ratios, and NPANELPOS=–20 displays
20 odds ratios in the first plot and a single odds ratio in the second. If n=0 (this is the
default), then all odds ratios are displayed in a single plot.

ORDER=ASCENDING | DESCENDING
displays the odds ratios in sorted order. By default the odds ratios are displayed in the order
in which they appear in the “Odds Ratio Estimates” table.

RANGE=(< min > < ,max >) | CLIP
specifies the range of odds ratios to display. If you specify RANGE=CLIP, then the confi-
dence intervals are clipped and the range contains the minimum and maximum odds ratios.
By default the range of view captures the extent of the odds ratio confidence intervals.

STATS
adds the numeric values of the odds ratio and its confidence limits to the graphic.
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PROFILE
requests that scale parameters be profiled from the optimization, if possible. This is the default for
generalized linear mixed models. In generalized linear models with normally distributed data, you
can use the PROFILE option to request profiling of the residual variance.

SCOREMOD
requests that the Hessian matrix in GLMMs be based on a modified scoring algorithm, provided that
PROC GLIMMIX is in scoring mode when the Hessian is evaluated. The procedure is in scoring
mode during iteration, if the optimization technique requires second derivatives, the SCORING=n
option is specified, and the iteration count has not exceeded n. The procedure also computes the
expected (scoring) Hessian matrix when you use the EXPHESSIAN option in the PROC GLIMMIX
statement.

The SCOREMOD option has no effect if the SCORING= or EXPHESSIAN option is not specified.
The nature of the SCOREMOD modification to the expected Hessian computation is shown in Ta-
ble 41.21, in the section “Pseudo-likelihood Estimation Based on Linearization” on page 3054. The
modification can improve the convergence behavior of the GLMM compared to standard Fisher scor-
ing and can provide a better approximation of the variability of the covariance parameters. For more
details, see the section “Estimated Precision of Estimates” on page 3056.

SCORING=number
requests that Fisher scoring be used in association with the estimation method up to iteration number.
By default, no scoring is applied. When you use the SCORING= option and PROC GLIMMIX
converges without stopping the scoring algorithm, the procedure uses the expected Hessian matrix to
compute approximate standard errors for the covariance parameters instead of the observed Hessian.
If necessary, the standard errors of the covariance parameters as well as the output from the ASYCOV
and ASYCORR options are adjusted.

If scoring stopped prior to convergence and you want to use the expected Hessian matrix in the
computation of standard errors, use the EXPHESSIAN option in the PROC GLIMMIX statement.

Scoring is not possible in models for nominal data. It is also not possible for GLMs with unknown
distribution or for those outside the exponential family. If you perform quasi-likelihood estimation,
the GLIMMIX procedure is always in scoring mode and the SCORING= option has no effect. See
the section “Quasi-likelihood for Independent Data” for a description of the types of models where
GLIMMIX applies quasi-likelihood estimation.

The SCORING= option has no effect for optimization methods that do not involve second deriva-
tives. See the TECHNIQUE= option in the NLOPTIONS statement and the section “Choosing an
Optimization Algorithm” on page 494 in Chapter 19, “Shared Concepts and Topics,” for details about
first- and second-order algorithms.

SINGCHOL=number
tunes the singularity criterion in Cholesky decompositions. The default is 1E4 times the machine
epsilon; this product is approximately 1E–12 on most computers.

SINGRES=number
sets the tolerance for which the residual variance is considered to be zero. The default is 1E4 times
the machine epsilon; this product is approximately 1E–12 on most computers.
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SINGULAR=number
tunes the general singularity criterion applied by the GLIMMIX procedure in divisions and inversions.
The default is 1E4 times the machine epsilon; this product is approximately 1E–12 on most computers.

STARTGLM
is an alias of the INITGLM option.

SUBGRADIENT< =SAS-data-set >

SUBGRAD< =SAS-data-set >
creates a data set with information about the gradient of the objective function. The contents and or-
ganization of the SUBGRADIENT= data set depend on the type of model. The following paragraphs
describe the SUBGRADIENT= data set for the two major estimation modes. See the section “GLM
Mode or GLMM Mode” on page 3067 for details about the estimation modes of the GLIMMIX pro-
cedure.

GLMM Mode If the GLIMMIX procedure operates in GLMM mode, the SUBGRADIENT= data
set contains as many observations as there are usable subjects in the analysis. The
maximum number of usable subjects is displayed in the “Dimensions” table. Gra-
dient information is not written to the data set for subjects who do not contribute
valid observations to the analysis. Note that the objective function in the “Iter-
ation History” table is in terms of the –2 log (residual, pseudo-) likelihood. The
gradients in the SUBGRADIENT= data set are gradients of that objective function.

The gradients are evaluated at the final solution of the estimation problem. If the
GLIMMIX procedure fails to converge, then the information in the SUBGRADI-
ENT= data set corresponds to the gradient evaluated at the last iteration or opti-
mization.

The number of gradients saved to the SUBGRADIENT= data set equals the num-
ber of parameters in the optimization. For example, with METHOD=LAPLACE
or METHOD=QUAD the fixed-effects parameters and the covariance parameters
take part in the optimization. The order in which the gradients appear in the data
set equals the order in which the gradients are displayed when the ITDETAILS
option is in effect: gradients for fixed-effects parameters precede those for covari-
ance parameters, and gradients are not reported for singular columns in the X0X
matrix. In models where the residual variance is profiled from the optimization, a
subject-specific gradient is not reported for the residual variance. To decompose
this gradient by subjects, add the NOPROFILE option in the PROC GLIMMIX
statement. When the subject-specific gradients in the SUBGRADIENT= data set
are summed, the totals equal the values reported by the GRADIENT option.

GLM Mode When you fit a generalized linear model (GLM) or a GLM with overdispersion, the
SUBGRADIENT= data set contains the observation-wise gradients of the negative
log-likelihood function with respect to the parameter estimates. Note that this cor-
responds to the objective function in GLMs as displayed in the “Iteration History”
table. However, the gradients displayed in the “Iteration History” for GLMs—
when the ITDETAILS option is in effect—are possibly those of the centered and
scaled coefficients. The gradients reported in the “Parameter Estimates” table and
in the SUBGRADIENT= data set are gradients with respect to the uncentered and
unscaled coefficients.
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The gradients are evaluated at the final estimates. If the model does not converge,
the gradients contain missing values. The gradients appear in the SUBGRADI-
ENT= data set in the same order as in the “Parameter Estimates” table, with sin-
gular columns removed.

The variables from the input data set are added to the SUBGRADIENT= data set
in GLM mode. The data set is organized in the same way as the input data set;
observations that do not contribute to the analysis are transferred to the SUBGRA-
DIENT= data set, but gradients are calculated only for observations that take part
in the analysis. If you use an ID statement, then only the variables in the ID state-
ment are transferred to the SUBGRADIENT= data set.

BY Statement
BY variables ;

You can specify a BY statement with PROC GLIMMIX to obtain separate analyses of observations in groups
that are defined by the BY variables. When a BY statement appears, the procedure expects the input data
set to be sorted in order of the BY variables. If you specify more than one BY statement, only the last one
specified is used.

If your input data set is not sorted in ascending order, use one of the following alternatives:

� Sort the data by using the SORT procedure with a similar BY statement.

� Specify the NOTSORTED or DESCENDING option in the BY statement for the GLIMMIX proce-
dure. The NOTSORTED option does not mean that the data are unsorted but rather that the data are
arranged in groups (according to values of the BY variables) and that these groups are not necessarily
in alphabetical or increasing numeric order.

� Create an index on the BY variables by using the DATASETS procedure (in Base SAS software).

Since sorting the data changes the order in which PROC GLMMIX reads observations, the sort order for
the levels of the CLASS variables might be affected if you have also specified ORDER=DATA in the PROC
GLIMMIX statement. This, in turn, affects specifications in the CONTRAST, ESTIMATE, or LSMESTI-
MATE statement.

For more information about BY-group processing, see the discussion in SAS Language Reference: Concepts.
For more information about the DATASETS procedure, see the discussion in the Base SAS Procedures
Guide.

CLASS Statement
CLASS variable < (REF= option) > . . . < variable < (REF= option) > > < / global-options > ;

The CLASS statement names the classification variables to be used in the model. Typical classification
variables are Treatment, Sex, Race, Group, and Replication. If you use the CLASS statement, it must
appear before the MODEL statement.
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Classification variables can be either character or numeric. By default, class levels are determined from the
entire set of formatted values of the CLASS variables.

NOTE: Prior to SAS 9, class levels were determined by using no more than the first 16 characters of the
formatted values. To revert to this previous behavior, you can use the TRUNCATE option in the CLASS
statement.

In any case, you can use formats to group values into levels. See the discussion of the FORMAT procedure
in the Base SAS Procedures Guide and the discussions of the FORMAT statement and SAS formats in SAS
Formats and Informats: Reference. You can adjust the order of CLASS variable levels with the ORDER=
option in the PROC GLIMMIX statement. You can specify the following REF= option to indicate how
the levels of an individual classification variable are to be ordered by enclosing it in parentheses after the
variable name:

REF=’level’ | FIRST | LAST
specifies a level of the classification variable to be put at the end of the list of levels. This level thus
corresponds to the reference level in the usual interpretation of the estimates with PROC GLIMMIX’s
singular parameterization. You can specify the level of the variable to use as the reference level;
specify a value that corresponds to the formatted value of the variable if a format is assigned. Alterna-
tively, you can specify REF=FIRST to designate that the first ordered level serve as the reference, or
REF=LAST to designate that the last ordered level serve as the reference. To specify that REF=FIRST
or REF=LAST be used for all classification variables, use the REF= global-option after the slash (/)
in the CLASS statement.

You can specify the following global-options in the CLASS statement after a slash (/):

REF=FIRST | LAST
specifies a level of all classification variables to be put at the end of the list of levels. This level thus
corresponds to the reference level in the usual interpretation of the estimates with PROC GLIMMIX’s
singular parameterization. Specify REF=FIRST to designate that the first ordered level for each clas-
sification variable serve as the reference. Specify REF=LAST to designate that the last ordered level
serve as the reference. This option applies to all the variables specified in the CLASS statement. To
specify different reference levels for different classification variables, use REF= options for individual
variables.

TRUNCATE
specifies that class levels be determined by using only up to the first 16 characters of the formatted
values of CLASS variables. When formatted values are longer than 16 characters, you can use this
option to revert to the levels as determined in releases prior to SAS 9.

CODE Statement
CODE < options > ;

The CODE statement enables you to write SAS DATA step code for computing predicted values of the fitted
model either to a file or to a catalog entry. This code can then be included in a DATA step to score new data.

Table 41.5 summarizes the options available in the CODE statement.
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Table 41.5 CODE Statement Options

Option Description

CATALOG= Names the catalog entry where the generated code is saved
DUMMIES Retains the dummy variables in the data set
ERROR Computes the error function
FILE= Names the file where the generated code is saved
FORMAT= Specifies the numeric format for the regression coefficients
GROUP= Specifies the group identifier for array names and statement labels
IMPUTE Imputes predicted values for observations with missing or invalid

covariates
LINESIZE= Specifies the line size of the generated code
LOOKUP= Specifies the algorithm for looking up CLASS levels
RESIDUAL Computes residuals

For details about the syntax of the CODE statement, see the section “CODE Statement” on page 390 in
Chapter 19, “Shared Concepts and Topics.”

CONTRAST Statement
CONTRAST ’label’ contrast-specification

< , contrast-specification > < , . . . >
< / options > ;

The CONTRAST statement provides a mechanism for obtaining custom hypothesis tests. It is patterned
after the CONTRAST statement in PROC MIXED and enables you to select an appropriate inference space
(McLean, Sanders, and Stroup 1991). The GLIMMIX procedure gives you greater flexibility in entering
contrast coefficients for random effects, however, because it permits the usual value-oriented positional
syntax for entering contrast coefficients, as well as a level-oriented syntax that simplifies entering coeffi-
cients for interaction terms and is designed to work with constructed effects that are defined through the
experimental EFFECT statement. The differences between the traditional and new-style coefficient syntax
are explained in detail in the section “Positional and Nonpositional Syntax for Contrast Coefficients” on
page 3097.

You can test the hypothesis L0� D 0, where L0 D ŒK0 M0� and �0 D Œˇ0 
 0�, in several inference spaces.
The inference space corresponds to the choice of M. When M D 0, your inferences apply to the entire
population from which the random effects are sampled; this is known as the broad inference space. When
all elements of M are nonzero, your inferences apply only to the observed levels of the random effects.
This is known as the narrow inference space, and you can also choose it by specifying all of the random
effects as fixed. The GLM procedure uses the narrow inference space. Finally, by zeroing portions of M
corresponding to selected main effects and interactions, you can choose intermediate inference spaces. The
broad inference space is usually the most appropriate; it is used when you do not specify random effects in
the CONTRAST statement.
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In the CONTRAST statement,

label identifies the contrast in the table. A label is required for every contrast specified. Labels
can be up to 200 characters and must be enclosed in quotes.

contrast-specification identifies the fixed effects and random effects and their coefficients from which the
L matrix is formed. The syntax representation of a contrast-specification is
< fixed-effect values . . . > < | random-effect values . . . >

fixed-effect identifies an effect that appears in the MODEL statement. The keyword INTERCEPT
can be used as an effect when an intercept is fitted in the model. You do not need to
include all effects that are in the MODEL statement.

random-effect identifies an effect that appears in the RANDOM statement. The first random effect must
follow a vertical bar (|); however, random effects do not have to be specified.

values are constants that are elements of the L matrix associated with the fixed and random
effects. There are two basic methods of specifying the entries of the L matrix. The
traditional representation—also known as the positional syntax—relies on entering co-
efficients in the position they assume in the L matrix. For example, in the following
statements the elements of L associated with the b main effect receive a 1 in the first
position and a –1 in the second position:

class a b;
model y = a b a*b;
contrast 'B at A2' b 1 -1 a*b 0 0 1 -1;

The elements associated with the interaction receive a 1 in the third position and a –1 in
the fourth position. In order to specify coefficients correctly for the interaction term, you
need to know how the levels of a and b vary in the interaction, which is governed by the
order of the variables in the CLASS statement. The nonpositional syntax is designed to
make it easier to enter coefficients for interactions and is necessary to enter coefficients
for effects constructed with the experimental EFFECT statement. In square brackets you
enter the coefficient followed by the associated levels of the CLASS variables. If B has
two and A has three levels, the previous CONTRAST statement, by using nonpositional
syntax for the interaction term, becomes

contrast 'B at A2' b 1 -1 a*b [1, 2 1] [-1, 2 2];

It assigns value 1 to the interaction where A is at level 2 and B is at level 1, and it as-
signs –1 to the interaction where both classification variables are at level 2. The comma
separating the entry for the L matrix from the level indicators is optional. Further de-
tails about the nonpositional contrast syntax and its use with constructed effects can be
found in the section “Positional and Nonpositional Syntax for Contrast Coefficients” on
page 3097. Nonpositional syntax is available only for fixed-effects coefficients.

The rows of L0 are specified in order and are separated by commas. The rows of the K0 component of L0 are
specified on the left side of the vertical bars (|). These rows test the fixed effects and are, therefore, checked
for estimability. The rows of the M0 component of L0 are specified on the right side of the vertical bars.
They test the random effects, and no estimability checking is necessary.
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If PROC GLIMMIX finds the fixed-effects portion of the specified contrast to be nonestimable (see the
SINGULAR= option), then it displays missing values for the test statistics.

If the elements of L are not specified for an effect that contains a specified effect, then the elements of the
unspecified effect are automatically “filled in” over the levels of the higher-order effect. This feature is
designed to preserve estimability for cases where there are complex higher-order effects. The coefficients
for the higher-order effect are determined by equitably distributing the coefficients of the lower-level effect
as in the construction of least squares means. In addition, if the intercept is specified, it is distributed over
all classification effects that are not contained by any other specified effect. If an effect is not specified and
does not contain any specified effects, then all of its coefficients in L are set to 0. You can override this
behavior by specifying coefficients for the higher-order effect.

If too many values are specified for an effect, the extra ones are ignored; if too few are specified, the
remaining ones are set to 0. If no random effects are specified, the vertical bar can be omitted; otherwise, it
must be present. If a SUBJECT effect is used in the RANDOM statement, then the coefficients specified for
the effects in the RANDOM statement are equitably distributed across the levels of the SUBJECT effect.
You can use the E option to see exactly what L matrix is used.

PROC GLIMMIX handles missing level combinations of classification variables similarly to PROC GLM
and PROC MIXED. These procedures delete fixed-effects parameters corresponding to missing levels in
order to preserve estimability. However, PROC MIXED and PROC GLIMMIX do not delete missing level
combinations for random-effects parameters, because linear combinations of the random-effects parameters
are always estimable. These conventions can affect the way you specify your CONTRAST coefficients.

The CONTRAST statement computes the statistic

F D

� b̌b

�0

L.L0CL/�1L0
� b̌b


�
r

where r D rank.L0CL/, and approximates its distribution with an F distribution unless DDFM=NONE. If
you select DDFM=NONE as the degrees-of-freedom method in the MODEL statement, and if you do not
assign degrees of freedom to the contrast with the DF= option, then PROC GLIMMIX computes the test
statistic r � F and approximates its distribution with a chi-square distribution. In the expression for F, C
is an estimate of VarŒb̌;b
 � 
�; see the section “Estimated Precision of Estimates” on page 3056 and the
section “Aspects Common to Adaptive Quadrature and Laplace Approximation” on page 3064 for details
about the computation of C in a generalized linear mixed model.

The numerator degrees of freedom in the F approximation and the degrees of freedom in the chi-square
approximation are equal to r. The denominator degrees of freedom are taken from the “Tests of Fixed
Effects” table and correspond to the final effect you list in the CONTRAST statement. You can change the
denominator degrees of freedom by using the DF= option.

You can specify the following options in the CONTRAST statement after a slash (/).

BYCATEGORY

BYCAT
requests that in models for nominal data (generalized logit models) the contrasts not be combined
across response categories but reported separately for each category. For example, assume that the
response variable Style is multinomial with three (unordered) categories. The following GLIMMIX
statements fit a generalized logit model relating the preferred style of instruction to school and edu-
cational program effects:
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proc glimmix data=school;
class School Program;
model Style(order=data) = School Program / s ddfm=none

dist=multinomial link=glogit;
freq Count;
contrast 'School 1 vs. 2' school 1 -1;
contrast 'School 1 vs. 2' school 1 -1 / bycat;

run;

The first contrast compares school effects in all categories. This is a two-degrees-of-freedom contrast
because there are two nonredundant categories. The second CONTRAST statement produces two
single-degree-of-freedom contrasts, one for each nonreference Style category.

The BYCATEGORY option has no effect unless your model is a generalized (mixed) logit model.

CHISQ
requests that chi-square tests be performed for all contrasts in addition to any F tests. A chi-square
statistic equals its corresponding F statistic times the numerator degrees of freedom, and these same
degrees of freedom are used to compute the p-value for the chi-square test. This p-value will always
be less than that for the F test, because it effectively corresponds to an F test with infinite denominator
degrees of freedom.

DF=number
specifies the denominator degrees of freedom for the F test. For the degrees of freedom methods
DDFM=BETWITHIN, DDFM=CONTAIN, and DDFM=RESIDUAL, the default is the denominator
degrees of freedom taken from the “Tests of Fixed Effects” table and corresponds to the final effect
you list in the CONTRAST statement. For DDFM=NONE, infinite denominator degrees of freedom
are assumed by default, and for DDFM=SATTERTHWAITE and DDFM=KENWARDROGER, the
denominator degrees of freedom are computed separately for each contrast.

E
requests that the L matrix coefficients for the contrast be displayed.

GROUP coeffs
sets up random-effect contrasts between different groups when a GROUP= variable appears in the
RANDOM statement. By default, CONTRAST statement coefficients on random effects are dis-
tributed equally across groups. If you enter a multiple row contrast, you can also enter multiple rows
for the GROUP coefficients. If the number of GROUP coefficients is less than the number of contrasts
in the CONTRAST statement, the GLIMMIX procedure cycles through the GROUP coefficients. For
example, the following two statements are equivalent:

contrast 'Trt 1 vs 2 @ x=0.4' trt 1 -1 0 | x 0.4,
trt 1 0 -1 | x 0.4,
trt 1 -1 0 | x 0.5,
trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1, 1 -1, 1 0 -1;

contrast 'Trt 1 vs 2 @ x=0.4' trt 1 -1 0 | x 0.4,
trt 1 0 -1 | x 0.4,
trt 1 -1 0 | x 0.5,
trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1;
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SINGULAR=number
tunes the estimability checking. If v is a vector, define ABS(v) to be the largest absolute value of the
elements of v. If ABS(K0 � K0T) is greater than c*number for any row of K0 in the contrast, then
K0ˇ is declared nonestimable. Here, T is the Hermite form matrix .X0X/�X0X, and c is ABS(K0),
except when it equals 0, and then c is 1. The value for number must be between 0 and 1; the default
is 1E–4.

SUBJECT coeffs
sets up random-effect contrasts between different subjects when a SUBJECT= variable appears in
the RANDOM statement. By default, CONTRAST statement coefficients on random effects are dis-
tributed equally across subjects. Listing subject coefficients for multiple row CONTRAST statements
follows the same rules as for GROUP coefficients.

COVTEST Statement
COVTEST < ’label’ > < test-specification > < / options > ;

The COVTEST statement provides a mechanism to obtain statistical inferences for the covariance param-
eters. Significance tests are based on the ratio of (residual) likelihoods or pseudo-likelihoods. Confidence
limits and bounds are computed as Wald or likelihood ratio limits. You can specify multiple COVTEST
statements.

The likelihood ratio test is obtained by fitting the model subject to the constraints imposed by the test-
specification. The test statistic is formed as twice the difference of the (possibly restricted) log (pseudo-)
likelihoods of the full and the reduced models. Note that fitting the null model does not necessarily require
fewer computer resources compared to fitting the full model. The optimization settings for refitting the
model are the same as for the full model and can be controlled with the NLOPTIONS statement.

Common questions in mixed modeling are whether variance components are zero, whether random effects
are independent, and whether rows (columns) can be added or removed from an unstructured covariance
matrix. When the parameters under the null hypothesis fall on the boundary of the parameter space, the dis-
tribution of the likelihood ratio statistic can be a complicated mixture of distributions. In certain situations it
is known to be a relatively straightforward mixture of central chi-square distributions. When the GLIMMIX
procedure recognizes the model and hypothesis as a case for which the mixture is readily available, the
p-value of the likelihood ratio test is determined accordingly as a linear combination of central chi-square
probabilities. The Note column in the “Likelihood Ratio Tests for Covariance Parameters” table along with
the table’s footnotes informs you about when mixture distributions are used in the calculation of p-values.
You can find important statistical and computational details about likelihood ratio testing of covariance pa-
rameters with the GLIMMIX procedure in the section “Statistical Inference for Covariance Parameters” on
page 3068.

In generalized linear mixed models that depend on pseudo-data, the GLIMMIX procedure fits the null model
for a test of covariance parameters to the final pseudo-data of the converged optimization.
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Table 41.6 summarizes the options available in the COVTEST statement.

Table 41.6 COVTEST Statement Options

Option Description

Test specification
TESTDATA= Reads in covariance parameter values from a SAS data set
GENERAL Provides a general facility to test linear combinations of covariance

parameters

Covariance Test Options
CL Requests confidence limits for the covariance parameter estimates
CLASSICAL Computes the likelihood ratio test p-value using the classical method
DF= Specifies the degrees of freedom
ESTIMATES Displays the estimates of the covariance parameters under the null hypoth-

esis
MAXITER= Limits the number of iterations
PARMS Displays the values of the covariance parameters under the null hypothesis
RESTART Specifies that starting values for the covariance parameters
TOLERANCE= Sets the tolerance level of the parameter space boundary
WALD Produces Wald Z tests
WGHT= Supplies weights for the computation of p-values

Test Specification

The test-specification in the COVTEST statement draws on keywords that represent a particular null hy-
pothesis, lists or data sets of parameter values, or general contrast specifications. Valid keywords are as
follows:

GLM | INDEP tests the model against a null model of complete independence. All G-side co-
variance parameters are eliminated and the R-side covariance structure is re-
duced to a diagonal structure.

DIAGG tests for a diagonal G matrix by constraining off-diagonal elements in G to zero.
The R-side structure is not modified.

DIAGR | CINDEP tests for conditional independence by reducing the R-side covariance structure
to diagonal form. The G-side structure is not modified.

HOMOGENEITY tests homogeneity of covariance parameters across groups by imposing equality
constraints. For example, the following statements fit a one-way model with
heterogeneous variances and test whether the model could be reduced to a one-
way analysis with the same variance across groups:

proc glimmix;
class A;
model y = a;
random _residual_ / group=A;
covtest 'common variance' homogeneity;

run;
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See Example 41.9 for an application with groups and unstructured covariance
matrices.

START | INITIAL compares the final estimates to the starting values of the covariance parameter
estimates. This option is useful, for example, if you supply starting values in the
PARMS statement and want to test whether the optimization produced signifi-
cantly better values. In GLMMs based on pseudo-data, the likelihoods that use
the starting and the final values are based on the final pseudo-data.

ZEROG tests whether the G matrix can be reduced to a zero matrix. This eliminates all
G-side random effects from the model.

Only a single keyword is permitted in the COVTEST statement. To test more complicated hypotheses, you
can formulate tests with the following specifications.

TESTDATA=data-set

TDATA=data-set
reads in covariance parameter values from a SAS data set. The data set should contain the numerical
variable Estimate or numerical variables named Covpi. The GLIMMIX procedure associates the
values for Covpi with the ith covariance parameter.

For data sets containing the numerical variable Estimate, the GLIMMIX procedure fixes the ith co-
variance parameter value at the value of the ith observation in the data set. A missing value indicates
not to fix the particular parameter. PROC GLIMMIX performs one likelihood ratio test for the TEST-
DATA= data set.

For data sets containing numerical variables named Covpi, the procedure performs one likelihood ratio
test for each observation in the TESTDATA= data set. You do not have to specify a Covpi variable
for every covariance parameter. If the value for the variable is not missing, PROC GLIMMIX fixes
the associated covariance parameter in the null model. Consider the following statements:

data TestDataSet;
input covp1 covp2 covp3;
datalines;

. 0 .
0 0 .
. 0 0
0 0 0
;

proc glimmix method=mspl;
class subject x;
model y = x age x*age;
random intercept age / sub=subject type=un;
covtest testdata=TestDataSet;

run;

Because the G matrix is a .2 � 2/ unstructured matrix, the first observation of the TestDataSet cor-
responds to zeroing the covariance between the random intercept and the random slope. When the
reduced model is fit, the variances of the intercept and slope are reestimated. The second observation
reduces the model to one with only a random slope in age. The third reduces the model to a random
intercept model. The last observation eliminates the G matrix altogether.

Note that the tests associated with the first and last set of covariance parameters in TestDataSet can
also be obtained by using keywords:
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proc glimmix;
class subject x;
model y = x age x*age;
random intercept age / sub=subject type=un;
covtest DiagG;
covtest GLM;

run;

value-list
supplies a list of values at which to fix the covariance parameters. A missing value in the list indicates
that the covariance parameter is not fixed. If the list is shorter than the number of covariance parame-
ters, missing values are assumed for all parameters not specified. The COVTEST statements that test
the random intercept and random slope in the previous example are as follows:

proc glimmix;
class subject x;
model y = x age x*age;
random intercept age / sub=subject type=un;
covtest 0 0;
covtest . 0 0;

run;

GENERAL coefficients < ,coefficients > < ,. . . >

CONTRAST coefficients < ,coefficients > < ,. . . >
provides a general facility to test linear combinations of covariance parameters. You can specify one
or more sets of coefficients. The position of a coefficient in the list corresponds to the position of
the parameter in the “Covariance Parameter Estimates” table. The linear combination of covariance
parameters that is implied by each set of coefficients is tested against zero. If the list of coefficients
is shorter than the number of covariance parameters, a zero coefficient is assumed for the remaining
parameters.

For example, in a heterogeneous variance model with four groups, the following statements test the
simultaneous hypothesis H W �21 D �

2
2 ; �

2
3 D �

2
4 :

proc glimmix;
class A;
model y = a;
random _residual_ / group=A;
covtest 'pair-wise homogeneity'

general 1 -1 0 0,
0 0 1 -1;

run;

In a repeated measures study with four observations per subject, the COVTEST statement in the
following example tests whether the four correlation parameters are identical:
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proc glimmix;
class subject drug time;
model y = drug time drug*time;
random _residual_ / sub=subject type=unr;
covtest 'Homogeneous correlation'

general 0 0 0 0 1 -1 ,
0 0 0 0 1 0 -1 ,
0 0 0 0 1 0 0 -1 ,
0 0 0 0 1 0 0 0 -1 ,
0 0 0 0 1 0 0 0 0 -1;

run;

Notice that the variances (the first four covariance parameters) are allowed to vary. The null model
for this test is thus a heterogeneous compound symmetry model.

The degrees of freedom associated with these general linear hypotheses are determined as the rank
of the matrix LL0, where L is the k � q matrix of coefficients and q is the number of covariance
parameters. Notice that the coefficients in a row do not have to sum to zero. The following statement
tests H W �1 D 3�2; �3 D 0:

covtest general 1 -3, 0 0 1;

Covariance Test Options

You can specify the following options in the COVTEST statement after a slash (/).

CL< (suboptions) >
requests confidence limits or bounds for the covariance parameter estimates. These limits are dis-
played as extra columns in the “Covariance Parameter Estimates” table.

The following suboptions determine the computation of confidence bounds and intervals. See the
section “Statistical Inference for Covariance Parameters” on page 3068 for details about constructing
likelihood ratio confidence limits for covariance parameters with PROC GLIMMIX.

ALPHA=number
determines the confidence level for constructing confidence limits for the covariance parameters.
The value of number must be between 0 and 1, the default is 0.05, and the confidence level is 1
– number.

LOWERBOUND

LOWER
requests lower confidence bounds.

TYPE=method
determines how the GLIMMIX procedure constructs confidence limits for covariance parame-
ters. The valid methods are PLR (or PROFILE), ELR (or ESTIMATED), and WALD.
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TYPE=PLR (TYPE=PROFILE) requests confidence bounds by inversion of the profile (re-
stricted) likelihood ratio (PLR). If � is the parameter of interest, L denotes the likelihood (possi-
bly restricted and possibly a pseudo-likelihood), and �2 is the vector of the remaining (nuisance)
parameters, then the profile likelihood is defined as

L.�2je�/ D sup
�2

L.e�;�2/
for a given value e� of � . If L.b�/ is the overall likelihood evaluated at the estimates b� , the
.1 � ˛/ � 100% confidence region for � satisfies the inequality

2
n
L.b�/ � L.�2je�/o � �21;.1�˛/

where �2
1;.1�˛/

is the cutoff from a chi-square distribution with one degree of freedom and ˛
probability to its right. If a residual scale parameter � is profiled from the estimation, and � is
expressed in terms of a ratio with � during estimation, then profile likelihood confidence limits
are constructed for the ratio of the parameter with the residual variance. A column showing
the ratio estimates is added to the “Covariance Parameter Estimates” table in this case. To
obtain profile likelihood ratio limits for the parameters, rather than their ratios, and for the
residual variance, use the NOPROFILE option in the PROC GLIMMIX statement. Also note
that METHOD=LAPLACE or METHOD=QUAD implies the NOPROFILE option.

The TYPE=ELR (TYPE=ESTIMATED) option constructs bounds from the estimated likelihood
(Pawitan 2001), where nuisance parameters are held fixed at the (restricted) maximum (pseudo-
) likelihood estimates of the model. Estimated likelihood intervals are computationally less
demanding than profile likelihood intervals, but they do not take into account the variability of
the nuisance parameters or the dependence among the covariance parameters. See the section
“Statistical Inference for Covariance Parameters” on page 3068 for a geometric interpretation
and comparison of ELR versus PLR confidence bounds. A .1 � ˛/ � 100% confidence region
based on the estimated likelihood is defined by the inequality

2
n
L.b�/ � L.e�;b�2/o � �21;.1�˛/

where L.e�;b�2/ is the likelihood evaluated at e� and the component of b� that corresponds to
�2. Estimated likelihood ratio intervals tend to perform well when the correlations between
the parameter of interest and the nuisance parameters is small. Their coverage probabilities
can fall short of the nominal coverage otherwise. You can display the correlation matrix of the
covariance parameter estimates with the ASYCORR option in the PROC GLIMMIX statement.

If you choose TYPE=PLR or TYPE=ELR, the GLIMMIX procedure reports the right-tail prob-
ability of the associated single-degree-of-freedom likelihood ratio test along with the confidence
bounds. This helps you diagnose whether solutions to the inequality could be found. If the re-
ported probability exceeds ˛, the associated bound does not meet the inequality. This might
occur, for example, when the parameter space is bounded and the likelihood at the boundary
values has not dropped by a sufficient amount to satisfy the test inequality.

The TYPE=WALD method requests confidence limits based on the Wald-type statistic Z� Db�=ease.b�/, where ease is the estimated asymptotic standard error of the covariance parameter.
For parameters that have a lower boundary constraint of zero, a Satterthwaite approximation is
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used to construct limits of the form

�b�
�2
�;1�˛=2

� � �
�b�

�2
�;˛=2

where � D 2Z2, and the denominators are quantiles of the �2 distribution with � degrees
of freedom. See Milliken and Johnson (1992) and Burdick and Graybill (1992) for similar
techniques. For all other parameters, Wald Z-scores and normal quantiles are used to construct
the limits. Such limits are also provided for variance components if you specify the NOBOUND
option in the PROC GLIMMIX statement or the PARMS statement.

UPPERBOUND

UPPER
requests upper confidence bounds.

If you do not specify any suboptions, the default is to compute two-sided Wald confidence intervals
with confidence level 1 � ˛ D 0:95.

CLASSICAL
requests that the p-value of the likelihood ratio test be computed by the classical method. Ifb� is the
realized value of the test statistic in the likelihood ratio test,

p D Pr
�
�2� �

b��
where � is the degrees of freedom of the hypothesis.

DF=value-list
enables you to supply degrees of freedom �1; � � � ; �k for the computation of p-values from chi-square
mixtures. The mixture weights w1; � � � ; wk are supplied with the WGHT= option. If no weights are
specified, an equal weight distribution is assumed. Ifb� is the realized value of the test statistic in the
likelihood ratio test, PROC GLIMMIX computes the p-value as (Shapiro 1988)

p D

kX
iD1

wiPr
�
�2�i �

b��
Note that �20 � 0 and that mixture weights are scaled to sum to one. If you specify more weights than
degrees of freedom in value-list, the rank of the hypothesis (DF column) is substituted for the missing
degrees of freedom.

Specifying a single value � for value-list without giving mixture weights is equivalent to computing
the p-value as

p D Pr
�
�2� �

b��
For example, the following statements compute the p-value based on a chi-square distribution with
one degree of freedom:
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proc glimmix noprofile;
class A sub;
model score = A;
random _residual_ / type=ar(1) subject=sub;
covtest 'ELR low' 30.62555 0.7133361 / df=1;

run;

The DF column of the COVTEST output will continue to read 2 regardless of the DF= specifica-
tion, however, because the DF column reflects the rank of the hypothesis and equals the number of
constraints imposed on the full model.

ESTIMATES

EST
displays the estimates of the covariance parameters under the null hypothesis. Specifying the ES-
TIMATES option in one COVTEST statement has the same effect as specifying the option in every
COVTEST statement.

MAXITER=number
limits the number of iterations when you are refitting the model under the null hypothesis to number
iterations. If the null model does not converge before the limit is reached, no p-values are produced.

PARMS
displays the values of the covariance parameters under the null hypothesis. This option is useful if
you supply multiple sets of parameter values with the TESTDATA= option. Specifying the PARMS
option in one COVTEST statement has the same effect as specifying the option in every COVTEST
statement.

RESTART
specifies that starting values for the covariance parameters for the null model are obtained by the
same mechanism as starting values for the full models. For example, if you do not specify a PARMS
statement, the RESTART option computes MIVQUE(0) estimates under the null model (Goodnight
1978a). If you provide starting values with the PARMS statement, the starting values for the null
model are obtained by applying restrictions to the starting values for the full model.

By default, PROC GLIMMIX obtains starting values by applying null model restrictions to the con-
verged estimates of the full model. Although this is computationally expedient, the method does not
always lead to good starting values for the null model, depending on the nature of the model and hy-
pothesis. In particular, when you receive a warning about parameters not specified under H0 falling
on the boundary, the RESTART option can be useful.

TOLERANCE=r
Values within tolerance r � 0 of the boundary of the parameter space are considered on the bound-
ary when PROC GLIMMIX examines estimates of nuisance parameters under H0 and determines
whether mixture weights and degrees of freedom can be obtained. In certain cases, when parameters
not specified under the null hypothesis are on boundaries, the asymptotic distribution of the likeli-
hood ratio statistic is not a mixture of chi-squares (see, for example, case 8 in Self and Liang 1987).
The default for r is 1E4 times the machine epsilon; this product is approximately 1E–12 on most
computers.
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WALD
produces Wald Z tests for the covariance parameters based on the estimates and asymptotic standard
errors in the “Covariance Parameter Estimates” table.

WGHT=value-list
enables you to supply weights for the computation of p-values from chi-square mixtures. See the DF=
option for details. Mixture weights are scaled to sum to one.

EFFECT Statement
EFFECT effect-specification ;

The experimental EFFECT statement enables you to construct special collections of columns for X or Z
matrices in your model. These collections are referred to as constructed effects to distinguish them from the
usual model effects formed from continuous or classification variables.

For details about the syntax of the EFFECT statement and how columns of constructed effects are computed,
see the section “EFFECT Statement” on page 393 of Chapter 19, “Shared Concepts and Topics.” For specific
details concerning the use of the EFFECT statement with the GLIMMIX procedure, see the section “Notes
on the EFFECT Statement” on page 3096.

ESTIMATE Statement
ESTIMATE ’label’ contrast-specification < (divisor=n) >

< , ’label’ contrast-specification < (divisor=n) > > < , . . . >
< / options > ;

The ESTIMATE statement provides a mechanism for obtaining custom hypothesis tests. As in the CON-
TRAST statement, the basic element of the ESTIMATE statement is the contrast-specification, which con-
sists of MODEL and G-side random effects and their coefficients. Specifically, a contrast-specification takes
the form

< fixed-effect values . . . > < | random-effect values . . . >

Based on the contrast-specifications in your ESTIMATE statement, PROC GLIMMIX constructs the matrix
L0 D ŒK0 M0�, as in the CONTRAST statement, where K is associated with the fixed effects and M is
associated with the G-side random effects. The GLIMMIX procedure supports nonpositional syntax for
the coefficients of fixed effects in the ESTIMATE statement. For details see the section “Positional and
Nonpositional Syntax for Contrast Coefficients” on page 3097.

PROC GLIMMIX then produces for each row l of L0 an approximate t test of the hypothesis H W l� D 0,
where � D Œˇ0 
 0�0. You can also obtain multiplicity-adjusted p-values and confidence limits for multirow
estimates with the ADJUST= option. The output from multiple ESTIMATE statements is organized as
follows. Results from unadjusted estimates are reported first in a single table, followed by separate tables
for each of the adjusted estimates. Results from all ESTIMATE statements are combined in the “Estimates”
ODS table.

Note that multirow estimates are permitted. Unlike the CONTRAST statement, you need to specify a
’label’ for every row of the multirow estimate, because PROC GLIMMIX produces one test per row. PROC
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GLIMMIX selects the degrees of freedom to match those displayed in the “Type III Tests of Fixed Effects”
table for the final effect you list in the ESTIMATE statement. You can modify the degrees of freedom by
using the DF= option. If you select DDFM=NONE and do not modify the degrees of freedom by using
the DF= option, PROC GLIMMIX uses infinite degrees of freedom, essentially computing approximate z
tests. If PROC GLIMMIX finds the fixed-effects portion of the specified estimate to be nonestimable, then
it displays “Non-est” for the estimate entry.

Table 41.7 summarizes the options available in the ESTIMATE statement.

Table 41.7 ESTIMATE Statement Options

Option Description

Construction and Computation of Estimable Functions
DIVISOR= Specifies a list of values to divide the coefficients
GROUP Sets up random-effect contrasts between different groups
SINGULAR= Tunes the estimability checking difference
SUBJECT Sets up random-effect contrasts between different subjects

Degrees of Freedom and p-values
ADJDFE= Determines denominator degrees of freedom when p-values and confidence

limits are adjusted for multiple comparisons
ADJUST= Determines the method for multiple comparison adjustment of estimates
ALPHA=˛ Determines the confidence level (1 � ˛)
DF= Assigns a specific value to degrees of freedom for tests and confidence

limits
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiplicity-corrected p-values further in a step-down fashion
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs t-type confidence limits
E Prints the L matrix

Generalized Linear Modeling
BYCATEGORY= Reports estimates separately for each category for models with nominal

data
EXP Displays exponentiated estimates
ILINK Computes and displays estimates and standard errors on the inverse linked

scale

ADJDFE=SOURCE

ADJDFE=ROW
specifies how denominator degrees of freedom are determined when p-values and confidence limits
are adjusted for multiple comparisons with the ADJUST= option. When you do not specify the
ADJDFE= option, or when you specify ADJDFE=SOURCE, the denominator degrees of freedom for
multiplicity-adjusted results are the denominator degrees of freedom for the final effect listed in the
ESTIMATE statement from the “Type III Tests of Fixed Effects” table.
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The ADJDFE=ROW setting is useful if you want multiplicity adjustments to take into account that
denominator degrees of freedom are not constant across estimates. This can be the case, for example,
when the DDFM=SATTERTHWAITE or DDFM=KENWARDROGER degrees-of-freedom method
is in effect.

ADJUST=BON

ADJUST=SCHEFFE

ADJUST=SIDAK

ADJUST=SIMULATE< (simoptions) >

ADJUST=T
requests a multiple comparison adjustment for the p-values and confidence limits for the estimates.
The adjusted quantities are produced in addition to the unadjusted quantities. Adjusted confidence
limits are produced if the CL or ALPHA= option is in effect. For a description of the adjustments,
see Chapter 42, “The GLM Procedure,” and Chapter 61, “The MULTTEST Procedure,” and the doc-
umentation for the ADJUST= option in the LSMEANS statement. The ADJUST= option is ignored
for generalized logit models.

If the STEPDOWN option is in effect, the p-values are further adjusted in a step-down fashion.

ALPHA=number
requests that a t-type confidence interval be constructed with confidence level 1 – number. The
value of number must be between 0 and 1; the default is 0.05. If DDFM=NONE and you do not
specify degrees of freedom with the DF= option, PROC GLIMMIX uses infinite degrees of freedom,
essentially computing a z interval.

BYCATEGORY

BYCAT
requests that in models for nominal data (generalized logit models) estimates be reported separately
for each category. In contrast to the BYCATEGORY option in the CONTRAST statement, an ESTI-
MATE statement in a generalized logit model does not distribute coefficients by response category,
because ESTIMATE statements always correspond to single rows of the L matrix.

For example, assume that the response variable Style is multinomial with three (unordered) cate-
gories. The following GLIMMIX statements fit a generalized logit model relating the preferred style
of instruction to school and educational program effects:

proc glimmix data=school;
class School Program;
model Style(order=data) = School Program / s ddfm=none

dist=multinomial link=glogit;
freq Count;
estimate 'School 1 vs. 2' school 1 -1 / bycat;
estimate 'School 1 vs. 2' school 1 -1;

run;

The first ESTIMATE statement compares school effects separately for each nonredundant category.
The second ESTIMATE statement compares the school effects for the first non-reference category.

The BYCATEGORY option has no effect unless your model is a generalized (mixed) logit model.



2972 F Chapter 41: The GLIMMIX Procedure

CL
requests that t-type confidence limits be constructed. If DDFM=NONE and you do not specify de-
grees of freedom with the DF= option, PROC GLIMMIX uses infinite degrees of freedom, essentially
computing a z interval. The confidence level is 0.95 by default. These intervals are adjusted for
multiplicity when you specify the ADJUST= option.

DF=number
specifies the degrees of freedom for the t test and confidence limits. The default is the denominator
degrees of freedom taken from the “Type III Tests of Fixed Effects” table and corresponds to the final
effect you list in the ESTIMATE statement.

DIVISOR=value-list
specifies a list of values by which to divide the coefficients so that fractional coefficients can be
entered as integer numerators. If you do not specify value-list, a default value of 1.0 is assumed.
Missing values in the value-list are converted to 1.0.

If the number of elements in value-list exceeds the number of rows of the estimate, the extra values
are ignored. If the number of elements in value-list is less than the number of rows of the estimate,
the last value in value-list is copied forward.

If you specify a row-specific divisor as part of the specification of the estimate row, this value multi-
plies the corresponding divisor implied by the value-list. For example, the following statement divides
the coefficients in the first row by 8, and the coefficients in the third and fourth row by 3:

estimate 'One vs. two' A 2 -2 (divisor=2),
'One vs. three' A 1 0 -1 ,
'One vs. four' A 3 0 0 -3 ,
'One vs. five' A 1 0 0 0 -1 / divisor=4,.,3;

Coefficients in the second row are not altered.

E
requests that the L matrix coefficients be displayed.

EXP
requests exponentiation of the estimate. When you model data with the logit, cumulative logit, or
generalized logit link functions, and the estimate represents a log odds ratio or log cumulative odds
ratio, the EXP option produces an odds ratio. See “Odds and Odds Ratio Estimation” on page 3090
for important details about the computation and interpretation of odds and odds ratio results with the
GLIMMIX procedure. If you specify the CL or ALPHA= option, the (adjusted) confidence bounds
are also exponentiated.

GROUP coeffs
sets up random-effect contrasts between different groups when a GROUP= variable appears in the
RANDOM statement. By default, ESTIMATE statement coefficients on random effects are dis-
tributed equally across groups. If you enter a multirow estimate, you can also enter multiple rows
for the GROUP coefficients. If the number of GROUP coefficients is less than the number of con-
trasts in the ESTIMATE statement, the GLIMMIX procedure cycles through the GROUP coefficients.
For example, the following two statements are equivalent:
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estimate 'Trt 1 vs 2 @ x=0.4' trt 1 -1 0 | x 0.4,
'Trt 1 vs 3 @ x=0.4' trt 1 0 -1 | x 0.4,
'Trt 1 vs 2 @ x=0.5' trt 1 -1 0 | x 0.5,
'Trt 1 vs 3 @ x=0.5' trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1, 1 -1, 1 0 -1;

estimate 'Trt 1 vs 2 @ x=0.4' trt 1 -1 0 | x 0.4,
'Trt 1 vs 3 @ x=0.4' trt 1 0 -1 | x 0.4,
'Trt 1 vs 2 @ x=0.5' trt 1 -1 0 | x 0.5,
'Trt 1 vs 3 @ x=0.5' trt 1 0 -1 | x 0.5 /

group 1 -1, 1 0 -1;

ILINK
requests that the estimate and its standard error are also reported on the scale of the mean (the inverse
linked scale). PROC GLIMMIX computes the value on the mean scale by applying the inverse link to
the estimate. The interpretation of this quantity depends on the fixed-effect values and random-effect
values specified in your ESTIMATE statement and on the link function. In a model for binary data
with logit link, for example, the following statements compute

1

1C expf�.˛1 � ˛2/g

where ˛1 and ˛2 are the fixed-effects solutions associated with the first two levels of the classification
effect A:

proc glimmix;
class A;
model y = A / dist=binary link=logit;
estimate 'A one vs. two' A 1 -1 / ilink;

run;

This quantity is not the difference of the probabilities associated with the two levels,

�1 � �2 D
1

1C expf�ˇ0 � ˛1g
�

1

1C expf�ˇ0 � ˛2g

The standard error of the inversely linked estimate is based on the delta method. If you also specify the
CL option, the GLIMMIX procedure computes confidence limits for the estimate on the mean scale.
In multinomial models for nominal data, the limits are obtained by the delta method. In other models
they are obtained from the inverse link transformation of the confidence limits for the estimate. The
ILINK option is specific to an ESTIMATE statement.

LOWER

LOWERTAILED
requests that the p-value for the t test be based only on values less than the test statistic. A two-tailed
test is the default. A lower-tailed confidence limit is also produced if you specify the CL or ALPHA=
option.

Note that for ADJUST=SCHEFFE the one-sided adjusted confidence intervals and one-sided adjusted
p-values are the same as the corresponding two-sided statistics, because this adjustment is based on
only the right tail of the F distribution.
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SINGULAR=number
tunes the estimability checking as documented for the CONTRAST statement.

STEPDOWN< (step-down-options) >
requests that multiplicity adjustments for the p-values of estimates be further adjusted in a step-down
fashion. Step-down methods increase the power of multiple testing procedures by taking advantage of
the fact that a p-value will never be declared significant unless all smaller p-values are also declared
significant. Note that the STEPDOWN adjustment combined with ADJUST=BON corresponds to
the methods of Holm (1979) and “Method 2” of Shaffer (1986); this is the default. Using step-
down-adjusted p-values combined with ADJUST=SIMULATE corresponds to the method of Westfall
(1997).

If the degrees-of-freedom method is DDFM=KENWARDROGER or DDFM=SATTERTHWAITE,
then step-down-adjusted p-values are produced only if the ADJDFE=ROW option is in effect.

Also, the STEPDOWN option affects only p-values, not confidence limits. For AD-
JUST=SIMULATE, the generalized least squares hybrid approach of Westfall (1997) is employed to
increase Monte Carlo accuracy.

You can specify the following step-down-options in parentheses after the STEPDOWN option.

MAXTIME=n
specifies the time (in seconds) to spend computing the maximal logically consistent sequential
subsets of equality hypotheses for TYPE=LOGICAL. The default is MAXTIME=60. If the
MAXTIME value is exceeded, the adjusted tests are not computed. When this occurs, you can
try increasing the MAXTIME value. However, note that there are common multiple compar-
isons problems for which this computation requires a huge amount of time—for example, all
pairwise comparisons between more than 10 groups. In such cases, try to use TYPE=FREE (the
default) or TYPE=LOGICAL(n) for small n.

ORDER=PVALUE

ORDER=ROWS
specifies the order in which the step-down tests are performed. ORDER=PVALUE is the default,
with estimates being declared significant only if all estimates with smaller (unadjusted) p-values
are significant. If you specify ORDER=ROWS, then significances are evaluated in the order in
which they are specified in the syntax.

REPORT
specifies that a report on the step-down adjustment be displayed, including a listing of the se-
quential subsets (Westfall 1997) and, for ADJUST=SIMULATE, the step-down simulation re-
sults.

TYPE=LOGICAL< (n) >

TYPE=FREE
If you specify TYPE=LOGICAL, the step-down adjustments are computed by using maximal
logically consistent sequential subsets of equality hypotheses (Shaffer 1986; Westfall 1997).
Alternatively, for TYPE=FREE, sequential subsets are computed ignoring logical constraints.
The TYPE=FREE results are more conservative than those for TYPE=LOGICAL, but they can
be much more efficient to produce for many estimates. For example, it is not feasible to take
logical constraints between all pairwise comparisons of more than about 10 groups. For this
reason, TYPE=FREE is the default.
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However, you can reduce the computational complexity of taking logical constraints into ac-
count by limiting the depth of the search tree used to compute them, specifying the optional
depth parameter as a number n in parentheses after TYPE=LOGICAL. As with TYPE=FREE,
results for TYPE=LOGICAL(n) are conservative relative to the true TYPE=LOGICAL results,
but even for TYPE=LOGICAL(0) they can be appreciably less conservative than TYPE=FREE
and they are computationally feasible for much larger numbers of estimates. If you do not
specify n or if n = –1, the full search tree is used.

SUBJECT coeffs
sets up random-effect contrasts between different subjects when a SUBJECT= variable appears in
the RANDOM statement. By default, ESTIMATE statement coefficients on random effects are dis-
tributed equally across subjects. Listing subject coefficients for an ESTIMATE statement with multi-
ple rows follows the same rules as for GROUP coefficients.

UPPER

UPPERTAILED
requests that the p-value for the t test be based only on values greater than the test statistic. A two-
tailed test is the default. An upper-tailed confidence limit is also produced if you specify the CL or
ALPHA= option.

Note that for ADJUST=SCHEFFE the one-sided adjusted confidence intervals and one-sided adjusted
p-values are the same as the corresponding two-sided statistics, because this adjustment is based on
only the right tail of the F distribution.

FREQ Statement
FREQ variable ;

The variable in the FREQ statement identifies a numeric variable in the data set or one computed through
PROC GLIMMIX programming statements that contains the frequency of occurrence for each observation.
PROC GLIMMIX treats each observation as if it appears f times, where f is the value of the FREQ variable
for the observation. If it is not an integer, the frequency value is truncated to an integer. If the frequency
value is less than 1 or missing, the observation is not used in the analysis. When the FREQ statement is not
specified, each observation is assigned a frequency of 1.

The analysis produced by using a FREQ statement reflects the expanded number of observations. For an
example of a FREQ statement in a model with random effects, see Example 41.11 in this chapter.

ID Statement
ID variables ;

The ID statement specifies which quantities to include in the OUT= data set from the OUTPUT statement
in addition to any statistics requested in the OUTPUT statement. If no ID statement is given, the GLIMMIX
procedure includes all variables from the input data set in the OUT= data set. Otherwise, only the variables
listed in the ID statement are included. Automatic variables such as _LINP_, _MU_, _VARIANCE_, etc.
are not transferred to the OUT= data set unless they are listed in the ID statement.
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The ID statement can be used to transfer computed quantities that depend on the model to an output data
set. In the following example, two sets of Hessian weights are computed in a gamma regression with a
noncanonical link. The covariance matrix for the fixed effects can be constructed as the inverse of X0WX.
W is a diagonal matrix of the wei or woi , depending on whether the expected or observed Hessian matrix
is desired, respectively.

proc glimmix;
class group age;
model cost = group age / s error=gamma link=pow(0.5);
output out=gmxout pred=pred;
id _variance_ wei woi;
vpmu = 2*_mu_;
if (_mu_ > 1.0e-8) then do;

gpmu = 0.5 * (_mu_**(-0.5));
gppmu = -0.25 * (_mu_**(-1.5));
wei = 1/(_phi_*_variance_*gpmu*gpmu);
woi = wei + (cost-_mu_) *

(_variance_*gppmu + vpmu*gpmu) /
(_variance_*_variance_*gpmu*gpmu*gpmu*_phi_);

end;
run;

The variables _VARIANCE_ and _MU_ and other symbols are predefined by PROC GLIMMIX and can be
used in programming statements. For rules and restrictions, see the section “Programming Statements” on
page 3042.

LSMEANS Statement
LSMEANS fixed-effects < / options > ;

The LSMEANS statement computes least squares means (LS-means) of fixed effects. As in the GLM and
the MIXED procedures, LS-means are predicted population margins—that is, they estimate the marginal
means over a balanced population. In a sense, LS-means are to unbalanced designs as class and subclass
arithmetic means are to balanced designs. The L matrix constructed to compute them is the same as the L
matrix formed in PROC GLM; however, the standard errors are adjusted for the covariance parameters in
the model. Least squares means computations are not supported for multinomial models.

Each LS-mean is computed as Lb̌, where L is the coefficient matrix associated with the least squares mean
and b̌ is the estimate of the fixed-effects parameter vector. The approximate standard error for the LS-mean
is computed as the square root of LbVarŒb̌�L0. The approximate variance matrix of the fixed-effects estimates
depends on the estimation method.

LS-means are constructed on the linked scale—that is, the scale on which the model effects are additive.
For example, in a binomial model with logit link, the least squares means are predicted population margins
of the logits.

LS-means can be computed for any effect in the MODEL statement that involves only CLASS variables.
You can specify multiple effects in one LSMEANS statement or in multiple LSMEANS statements, and
all LSMEANS statements must appear after the MODEL statement. As in the ESTIMATE statement, the L
matrix is tested for estimability, and if this test fails, PROC GLIMMIX displays “Non-est” for the LS-means
entries.
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Assuming the LS-mean is estimable, PROC GLIMMIX constructs an approximate t test to test the null hy-
pothesis that the associated population quantity equals zero. By default, the denominator degrees of freedom
for this test are the same as those displayed for the effect in the “Type III Tests of Fixed Effects” table. If the
DDFM=SATTERTHWAITE or DDFM=KENWARDROGER option is specified in the MODEL statement,
PROC GLIMMIX determines degrees of freedom separately for each test, unless the DDF= option over-
rides it for a particular effect. See the DDFM= option for more information. Table 41.8 summarizes options
available in the LSMEANS statement. All LSMEANS options are subsequently discussed in alphabetical
order.

Table 41.8 LSMEANS Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate value in computing LS-means
BYLEVEL Computes separate margins
DIFF Requests differences of LS-means
OM Specifies weighting scheme for LS-mean computation as determined by

the input data set
SINGULAR= Tunes estimability checking
SLICE= Partitions F tests (simple effects)
SLICEDIFF= Requests simple effects differences
SLICEDIFFTYPE Determines the type of simple difference

Degrees of Freedom and P-values
ADJDFE= Determines whether to compute row-wise denominator degrees of freedom

with DDFM=SATTERTHWAITE or DDFM=KENWARDROGER
ADJUST= Determines the method for multiple comparison adjustment of LS-mean

differences
ALPHA=˛ Determines the confidence level (1 � ˛)
DF= Assigns specific value to degrees of freedom for tests and confidence limits
STEPDOWN Adjusts multiple comparison p-values further in a step-down fashion

Statistical Output
CL Constructs confidence limits for means and or mean differences
CORR Displays correlation matrix of LS-means
COV Displays covariance matrix of LS-means
E Prints the L matrix
ILINK Applies the inverse link transform to the LS-Means (not differences) and

produces the standard errors on the inverse linked scale
LINES Produces “Lines” display for pairwise LS-mean differences
ODDS Reports odds of levels of fixed effects if permissible by the link function
ODDSRATIO Reports (simple) differences of least squares means in terms of odds ratios

if permissible by the link function
PLOTS= Requests ODS statistical graphics of means and mean comparisons
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You can specify the following options in the LSMEANS statement after a slash (/).

ADJDFE=ROW
ADJDFE=SOURCE

specifies how denominator degrees of freedom are determined when p-values and confidence limits
are adjusted for multiple comparisons with the ADJUST= option. When you do not specify the
ADJDFE= option, or when you specify ADJDFE=SOURCE, the denominator degrees of freedom for
multiplicity-adjusted results are the denominator degrees of freedom for the LS-mean effect in the
“Type III Tests of Fixed Effects” table. When you specify ADJDFE=ROW, the denominator degrees
of freedom for multiplicity-adjusted results correspond to the degrees of freedom displayed in the DF
column of the “Differences of Least Squares Means” table.

The ADJDFE=ROW setting is particularly useful if you want multiplicity adjustments to take into
account that denominator degrees of freedom are not constant across LS-mean differences. This
can be the case, for example, when the DDFM=SATTERTHWAITE or DDFM=KENWARDROGER
degrees-of-freedom method is in effect.

In one-way models with heterogeneous variance, combining certain ADJUST= options with the AD-
JDFE=ROW option corresponds to particular methods of performing multiplicity adjustments in the
presence of heteroscedasticity. For example, the following statements fit a heteroscedastic one-way
model and perform Dunnett’s T3 method (Dunnett 1980), which is based on the studentized maximum
modulus (ADJUST=SMM):

proc glimmix;
class A;
model y = A / ddfm=satterth;
random _residual_ / group=A;
lsmeans A / adjust=smm adjdfe=row;

run;

If you combine the ADJDFE=ROW option with ADJUST=SIDAK, the multiplicity adjustment corre-
sponds to the T2 method of Tamhane (1979), while ADJUST=TUKEY corresponds to the method of
Games-Howell (Games and Howell 1976). Note that ADJUST=TUKEY gives the exact results for the
case of fractional degrees of freedom in the one-way model, but it does not take into account that the
degrees of freedom are subject to variability. A more conservative method, such as ADJUST=SMM,
might protect the overall error rate better.

Unless the ADJUST= option is specified in the LSMEANS statement, the ADJDFE= option has no
effect.

ADJUST=BON
ADJUST=DUNNETT
ADJUST=NELSON
ADJUST=SCHEFFE
ADJUST=SIDAK
ADJUST=SIMULATE< (simoptions) >
ADJUST=SMM | GT2
ADJUST=TUKEY

requests a multiple comparison adjustment for the p-values and confidence limits for the differences
of LS-means. The adjusted quantities are produced in addition to the unadjusted quantities. By de-
fault, PROC GLIMMIX performs all pairwise differences. If you specify ADJUST=DUNNETT, the
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procedure analyzes all differences with a control level. If you specify ADJUST=NELSON, ANOM
differences are taken. The ADJUST= option implies the DIFF option, unless the SLICEDIFF= option
is specified.

The BON (Bonferroni) and SIDAK adjustments involve correction factors described in Chapter 42,
“The GLM Procedure,” and Chapter 61, “The MULTTEST Procedure;” also see Westfall and Young
(1993) and Westfall et al. (1999). When you specify ADJUST=TUKEY and your data are unbal-
anced, PROC GLIMMIX uses the approximation described in Kramer (1956) and identifies the ad-
justment as “Tukey-Kramer” in the results. Similarly, when you specify ADJUST=DUNNETT or
ADJUST=NELSON and the LS-means are correlated, the GLIMMIX procedure uses the factor-
analytic covariance approximation described in Hsu (1992) and identifies the adjustment in the re-
sults as “Dunnett-Hsu” or “Nelson-Hsu,” respectively. The approximation derives an approximate
“effective sample sizes” for which exact critical values are computed. Note that computing the ex-
act adjusted p-values and critical values for unbalanced designs can be computationally intensive, in
particular for ADJUST=NELSON. A simulation-based approach, as specified by the ADJUST=SIM
option, while nondeterministic, can provide inferences that are sufficiently accurate in much less time.
The preceding references also describe the SCHEFFE and SMM adjustments.

Nelson’s adjustment applies only to the analysis of means (Ott 1967; Nelson 1982, 1991, 1993), where
LS-means are compared against an average LS-mean. It does not apply to all pairwise differences of
least squares means, or to slice differences that you specify with the SLICEDIFF= option. See the
DIFF=ANOM option for more details regarding the analysis of means with the GLIMMIX procedure.

The SIMULATE adjustment computes adjusted p-values and confidence limits from the simulated
distribution of the maximum or maximum absolute value of a multivariate t random vector. All co-
variance parameters, except the residual scale parameter, are fixed at their estimated values through-
out the simulation, potentially resulting in some underdispersion. The simulation estimates q, the true
.1� ˛/ quantile, where 1� ˛ is the confidence coefficient. The default ˛ is 0.05, and you can change
this value with the ALPHA= option in the LSMEANS statement.

The number of samples is set so that the tail area for the simulated q is within 
 of 1 � ˛ with
100.1 � �/% confidence. In equation form,

Pr.jF.bq/ � .1 � ˛/j � 
/ D 1 � �
where Oq is the simulated q and F is the true distribution function of the maximum; see Edwards and
Berry (1987) for details. By default, 
 = 0.005 and � = 0.01, placing the tail area of Oq within 0.005 of
0.95 with 99% confidence. The ACC= and EPS= simoptions reset 
 and �, respectively, the NSAMP=
simoption sets the sample size directly, and the SEED= simoption specifies an integer used to start the
pseudo-random number generator for the simulation. If you do not specify a seed, or if you specify a
value less than or equal to zero, the seed is generated from reading the time of day from the computer
clock. For additional descriptions of these and other simulation options, see the section “LSMEANS
Statement” on page 3293 in Chapter 42, “The GLM Procedure.”

If the STEPDOWN option is in effect, the p-values are further adjusted in a step-down fashion. For
certain options and data, this adjustment is exact under an iid N.0; �2/ model for the dependent
variable, in particular for the following:

� for ADJUST=DUNNETT when the means are uncorrelated

� for ADJUST=TUKEY with STEPDOWN(TYPE=LOGICAL) when the means are balanced and
uncorrelated.
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The first case is a consequence of the nature of the successive step-down hypotheses for compar-
isons with a control; the second employs an extension of the maximum studentized range distribution
appropriate for partition hypotheses (Royen 1989). Finally, for STEPDOWN(TYPE=FREE), AD-
JUST=TUKEY employs the Royen (1989) extension in such a way that the resulting p-values are
conservative.

ALPHA=number
requests that a t-type confidence interval be constructed for each of the LS-means with confidence
level 1 – number. The value of number must be between 0 and 1; the default is 0.05.

AT variable=value

AT (variable-list)=(value-list)

AT MEANS
enables you to modify the values of the covariates used in computing LS-means. By default, all
covariate effects are set equal to their mean values for computation of standard LS-means. The AT
option enables you to assign arbitrary values to the covariates. Additional columns in the output table
indicate the values of the covariates.

If there is an effect containing two or more covariates, the AT option sets the effect equal to the product
of the individual means rather than the mean of the product (as with standard LS-means calculations).
The AT MEANS option sets covariates equal to their mean values (as with standard LS-means) and
incorporates this adjustment to crossproducts of covariates.

As an example, consider the following invocation of PROC GLIMMIX:

proc glimmix;
class A;
model Y = A x1 x2 x1*x2;
lsmeans A;
lsmeans A / at means;
lsmeans A / at x1=1.2;
lsmeans A / at (x1 x2)=(1.2 0.3);

run;

For the first two LSMEANS statements, the LS-means coefficient for x1 is x1 (the mean of x1) and
for x2 is x2 (the mean of x2). However, for the first LSMEANS statement, the coefficient for x1*x2
is x1x2, but for the second LSMEANS statement, the coefficient is x1 � x2. The third LSMEANS
statement sets the coefficient for x1 equal to 1.2 and leaves it at x2 for x2, and the final LSMEANS
statement sets these values to 1.2 and 0.3, respectively.

Even if you specify a WEIGHT variable, the unweighted covariate means are used for the covariate
coefficients if there is no AT specification. If you specify the AT option, WEIGHT or FREQ variables
are taken into account as follows. The weighted covariate means are then used for the covariate
coefficients for which no explicit AT values are given, or if you specify AT MEANS. Observations that
do not contribute to the analysis because of a missing dependent variable are included in computing
the covariate means. You should use the E option in conjunction with the AT option to check that the
modified LS-means coefficients are the ones you want.

The AT option is disabled if you specify the BYLEVEL option.
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BYLEVEL
requests that separate margins be computed for each level of the LSMEANS effect.

The standard LS-means have equal coefficients across classification effects. The BYLEVEL option
changes these coefficients to be proportional to the observed margins. This adjustment is reasonable
when you want your inferences to apply to a population that is not necessarily balanced but has the
margins observed in the input data set. In this case, the resulting LS-means are actually equal to
raw means for fixed-effects models and certain balanced random-effects models, but their estimated
standard errors account for the covariance structure that you have specified. If a WEIGHT statement
is specified, PROC GLIMMIX uses weighted margins to construct the LS-means coefficients.

If the AT option is specified, the BYLEVEL option disables it.

CL
requests that t-type confidence limits be constructed for each of the LS-means. If DDFM=NONE, then
PROC GLIMMIX uses infinite degrees of freedom for this test, essentially computing a z interval. The
confidence level is 0.95 by default; this can be changed with the ALPHA= option. If you specify an
ADJUST= option, then the confidence limits are adjusted for multiplicity, but if you also specify
STEPDOWN, then only p-values are step-down adjusted, not the confidence limits.

CORR
displays the estimated correlation matrix of the least squares means as part of the “Least Squares
Means” table.

COV
displays the estimated covariance matrix of the least squares means as part of the “Least Squares
Means” table.

DF=number
specifies the degrees of freedom for the t test and confidence limits. The default is the denominator
degrees of freedom taken from the “Type III Tests of Fixed Effects” table corresponding to the LS-
means effect.

DIFF< =difftype >

PDIFF< =difftype >
requests that differences of the LS-means be displayed. The optional difftype specifies which differ-
ences to produce, with possible values ALL, ANOM, CONTROL, CONTROLL, and CONTROLU.
The ALL value requests all pairwise differences, and it is the default. The CONTROL difftype
requests differences with a control, which, by default, is the first level of each of the specified
LSMEANS effects.

The ANOM value requests differences between each LS-mean and the average LS-mean, as in the
analysis of means (Ott 1967). The average is computed as a weighted mean of the LS-means, the
weights being inversely proportional to the diagonal entries of the

L
�
X0X

�� L0

matrix. If LS-means are nonestimable, this design-based weighted mean is replaced with an equally
weighted mean. Note that the ANOM procedure in SAS/QC software implements both tables and
graphics for the analysis of means with a variety of response types. For one-way designs and normal
data with identity link, the DIFF=ANOM computations are equivalent to the results of PROC ANOM.
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If the LS-means being compared are uncorrelated, exact adjusted p-values and critical values for
confidence limits can be computed in the analysis of means; see Nelson (1982, 1991, 1993); Guirguis
and Tobias (2004) as well as the documentation for the ADJUST=NELSON option.

To specify which levels of the effects are the controls, list the quoted formatted values in parentheses
after the CONTROL keyword. For example, if the effects A, B, and C are classification variables,
each having two levels, 1 and 2, the following LSMEANS statement specifies the (1,2) level of A*B
and the (2,1) level of B*C as controls:

lsmeans A*B B*C / diff=control('1' '2' '2' '1');

For multiple effects, the results depend upon the order of the list, and so you should check the output
to make sure that the controls are correct.

Two-tailed tests and confidence limits are associated with the CONTROL difftype. For one-tailed
results, use either the CONTROLL or CONTROLU difftype. The CONTROLL difftype tests whether
the noncontrol levels are significantly smaller than the control; the upper confidence limits for the
control minus the noncontrol levels are considered to be infinity and are displayed as missing. Con-
versely, the CONTROLU difftype tests whether the noncontrol levels are significantly larger than the
control; the upper confidence limits for the noncontrol levels minus the control are considered to be
infinity and are displayed as missing.

If you want to perform multiple comparison adjustments on the differences of LS-means, you must
specify the ADJUST= option.

The differences of the LS-means are displayed in a table titled “Differences of Least Squares Means.”

E
requests that the L matrix coefficients for the LSMEANS effects be displayed.

ILINK
requests that estimates and their standard errors in the “Least Squares Means” table also be reported
on the scale of the mean (the inverse linked scale). The ILINK option is specific to an LSMEANS
statement. If you also specify the CL option, the GLIMMIX procedure computes confidence intervals
for the predicted means by applying the inverse link transform to the confidence limits on the linked
(linear) scale. Standard errors on the inverse linked scale are computed by the delta method.

The GLIMMIX procedure applies the inverse link transform to the LS-mean reported in the Estimate
column. In a logistic model, for example, this implies that the value reported as the inversely linked
estimate corresponds to a predicted probability that is based on an average estimable function (the
estimable function that produces the LS-mean on the linear scale). To compute average predicted
probabilities, you can average the results from applying the ILINK option in the ESTIMATE statement
for suitably chosen estimable functions.

LINES
presents results of comparisons between all pairs of least squares means by listing the means in
descending order and indicating nonsignificant subsets by line segments beside the corresponding
LS-means. When all differences have the same variance, these comparison lines are guaranteed to
accurately reflect the inferences based on the corresponding tests, made by comparing the respective
p-values to the value of the ALPHA= option (0.05 by default). However, equal variances might not be
the case for differences between LS-means. If the variances are not all the same, then the comparison
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lines might be conservative, in the sense that if you base your inferences on the lines alone, you will
detect fewer significant differences than the tests indicate. If there are any such differences, PROC
GLIMMIX lists the pairs of means that are inferred to be significantly different by the tests but not by
the comparison lines. Note, however, that in many cases, even though the variances are unequal, they
are similar enough that the comparison lines accurately reflect the test inferences.

ODDS
requests that in models with logit, cumulative logit, and generalized logit link function the odds of the
levels of the fixed effects are reported. If you specify the CL or ALPHA= option, confidence intervals
for the odds are also computed. See the section “Odds and Odds Ratio Estimation” on page 3090
for further details about computation and interpretation of odds and odds ratios with the GLIMMIX
procedure.

ODDSRATIO

OR
requests that LS-mean differences (DIFF, ADJUST= options) and simple effect comparisons
(SLICEDIFF option) are also reported in terms of odds ratios. The ODDSRATIO option is ignored
unless you use either the logit, cumulative logit, or generalized logit link function. If you specify the
CL or ALPHA= option, confidence intervals for the odds ratios are also computed. These intervals
are adjusted for multiplicity when you specify the ADJUST= option. See the section “Odds and Odds
Ratio Estimation” on page 3090 for further details about computation and interpretation of odds and
odds ratios with the GLIMMIX procedure.

OBSMARGINS

OM
specifies a potentially different weighting scheme for the computation of LS-means coefficients. The
standard LS-means have equal coefficients across classification effects; however, the OM option
changes these coefficients to be proportional to those found in the input data set. This adjustment
is reasonable when you want your inferences to apply to a population that is not necessarily balanced
but has the margins observed in your data.

In computing the observed margins, PROC GLIMMIX uses all observations for which there are no
missing or invalid independent variables, including those for which there are missing dependent vari-
ables. Also, if you use a WEIGHT statement, PROC GLIMMIX computes weighted margins to
construct the LS-means coefficients. If your data are balanced, the LS-means are unchanged by the
OM option.

The BYLEVEL option modifies the observed-margins LS-means. Instead of computing the margins
across all of the input data set, PROC GLIMMIX computes separate margins for each level of the
LSMEANS effect in question. In this case the resulting LS-means are actually equal to raw means for
fixed-effects models and certain balanced random-effects models, but their estimated standard errors
account for the covariance structure that you have specified.

You can use the E option in conjunction with either the OM or BYLEVEL option to check that the
modified LS-means coefficients are the ones you want. It is possible that the modified LS-means are
not estimable when the standard ones are estimable, or vice versa.
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PDIFF
is the same as the DIFF option. See the description of the DIFF option on page 2981.

PLOT | PLOTS< =plot-request< (options) > >

PLOT | PLOTS< =(plot-request< (options) > < . . . plot-request< (options) > >) >
creates least squares means related graphs when ODS Graphics has been enabled and the plot request
does not conflict with other options in the LSMEANS statement. For general information about ODS
Graphics, see Chapter 21, “Statistical Graphics Using ODS.” For examples of the basic statistical
graphics for least squares means and aspects of their computation and interpretation, see the section
“Graphics for LS-Mean Comparisons” on page 3122 in this chapter.

The options for a specific plot request (and their suboptions) of the LSMEANS statement include
those for the PLOTS= option in the PROC GLIMMIX statement. You can specify classification
effects in the MEANPLOT request of the LSMEANS statement to control the display of interaction
means with the PLOTBY= and SLICEBY= suboptions; these are not available in the PLOTS= option
in the PROC GLIMMIX statement. Options specified in the LSMEANS statement override those in
the PLOTS= option in the PROC GLIMMIX statement.

The available options and suboptions are as follows.

ALL
requests that the default plots corresponding to this LSMEANS statement be produced. The
default plot depends on the options in the statement.

ANOMPLOT

ANOM
requests an analysis of means display in which least squares means are compared to an average
least squares mean. Least squares mean ANOM plots are produced only for those model effects
listed in LSMEANS statements that have options that do not contradict with the display. For
example, the following statements produce analysis of mean plots for effects A and C:

lsmeans A / diff=anom plot=anom;
lsmeans B / diff plot=anom;
lsmeans C / plot=anom;

The DIFF option in the second LSMEANS statement implies all pairwise differences.

CONTROLPLOT

CONTROL
requests a display in which least squares means are visually compared against a reference level.
These plots are produced only for statements with options that are compatible with control
differences. For example, the following statements produce control plots for effects A and C:

lsmeans A / diff=control('1') plot=control;
lsmeans B / diff plot=control;
lsmeans C plot=control;

The DIFF option in the second LSMEANS statement implies all pairwise differences.



LSMEANS Statement F 2985

DIFFPLOT< (diffplot-options) >

DIFFOGRAM< (diffplot-options) >

DIFF< (diffplot-options) >
requests a display of all pairwise least squares mean differences and their significance. The
display is also known as a “mean-mean scatter plot” when it is based on arithmetic means (Hsu
1996; Hsu and Peruggia 1994). For each comparison a line segment, centered at the LS-means in
the pair, is drawn. The length of the segment corresponds to the projected width of a confidence
interval for the least squares mean difference. Segments that fail to cross the 45-degree reference
line correspond to significant least squares mean differences.

LS-mean difference plots are produced only for statements with options that are compatible with
the display. For example, the following statements request differences against a control level for
the A effect, all pairwise differences for the B effect, and the least squares means for the C effect:

lsmeans A / diff=control('1') plot=diff;
lsmeans B / diff plot=diff;
lsmeans C plot=diff;

The DIFF= type in the first statement is incompatible with a display of all pairwise differences.

You can specify the following diffplot-options. The ABS and NOABS options determine the
positioning of the line segments in the plot. When the ABS option is in effect, and this is the
default, all line segments are shown on the same side of the reference line. The NOABS option
separates comparisons according to the sign of the difference. The CENTER option marks the
center point for each comparison. This point corresponds to the intersection of two least squares
means. The NOLINES option suppresses the display of the line segments that represent the
confidence bounds for the differences of the least squares means. The NOLINES option implies
the CENTER option. The default is to draw line segments in the upper portion of the plot area
without marking the center point.

MEANPLOT< (meanplot-options) >
requests displays of the least squares means.

The following meanplot-options control the display of the least squares means.

ASCENDING
displays the least squares means in ascending order. This option has no effect if means are
sliced or displayed in separate plots.

CL
displays upper and lower confidence limits for the least squares means. By default, 95%
limits are drawn. You can change the confidence level with the ALPHA= option. Confi-
dence limits are drawn by default if the CL option is specified in the LSMEANS statement.

CLBAND
displays confidence limits as bands. This option implies the JOIN option.
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DESCENDING
displays the least squares means in descending order. This option has no effect if means are
sliced or displayed in separate plots.

ILINK
requests that means (and confidence limits) are displayed on the inverse linked scale.

JOIN

CONNECT
connects the least squares means with lines. This option is implied by the CLBAND op-
tion. If the effect contains nested variables, and a SLICEBY= effect contains classification
variables that appear as crossed effects, this option is ignored.

SLICEBY=fixed-effect
specifies an effect by which to group the means in a single plot. For example, the following
statement requests a plot in which the levels of A are placed on the horizontal axis and the
means that belong to the same level of B are joined by lines:

lsmeans A*B / plot=meanplot(sliceby=b join);

Unless the LS-mean effect contains at least two classification variables, the SLICEBY= op-
tion has no effect. The fixed-effect does not have to be an effect in your MODEL statement,
but it must consist entirely of classification variables.

PLOTBY=fixed-effect
specifies an effect by which to break interaction plots into separate displays. For example,
the following statement requests for each level of C one plot of the A*B cell means that are
associated with that level of C:

lsmeans A*B*C / plot=meanplot(sliceby=b plotby=c clband);

In each plot, levels of A are displayed on the horizontal axis, and confidence bands are
drawn around the means that share the same level of B.

The PLOTBY= option has no effect unless the LS-mean effect contains at least three clas-
sification variables. The fixed-effect does not have to be an effect in the MODEL statement,
but it must consist entirely of classification variables.

NONE
requests that no plots be produced.

When LS-mean calculations are adjusted for multiplicity by using the ADJUST= option, the plots are
adjusted accordingly.

SINGULAR=number
tunes the estimability checking as documented for the CONTRAST statement.

SLICE=fixed-effect
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SLICE=(fixed-effects)
specifies effects by which to partition interaction LSMEANS effects. This can produce what are
known as tests of simple effects (Winer 1971). For example, suppose that A*B is significant, and you
want to test the effect of A for each level of B. The appropriate LSMEANS statement is

lsmeans A*B / slice=B;

This statement tests for the simple main effects of A for B, which are calculated by extracting the
appropriate rows from the coefficient matrix for the A*B LS-means and by using them to form an F
test.

The SLICE option produces F tests that test the simultaneous equality of cell means at a fixed level
of the slice effect (Schabenberger, Gregoire, and Kong 2000). You can request differences of the least
squares means while holding one or more factors at a fixed level with the SLICEDIFF= option.

The SLICE option produces a table titled “Tests of Effect Slices.”

SLICEDIFF=fixed-effect

SLICEDIFF=(fixed-effects)

SIMPLEDIFF=fixed-effect

SIMPLEDIFF=(fixed-effects)
requests that differences of simple effects be constructed and tested against zero. Whereas the SLICE
option extracts multiple rows of the coefficient matrix and forms an F test, the SLICEDIFF option
tests pairwise differences of these rows. This enables you to perform multiple comparisons among
the levels of one factor at a fixed level of the other factor. For example, assume that, in a balanced
design, factors A and B have a = 4 and b = 3 levels, respectively. Consider the following statements:

proc glimmix;
class a b;
model y = a b a*b;
lsmeans a*b / slice=a;
lsmeans a*b / slicediff=a;

run;

The first LSMEANS statement produces four F tests, one per level of A. The first of these tests is
constructed by extracting the three rows corresponding to the first level of A from the coefficient
matrix for the A*B interaction. Call this matrix La1 and its rows l.1/a1 , l.2/a1 , and l.3/a1 . The SLICE tests
the two-degrees-of-freedom hypothesis

H W

8<:
�
l.1/a1 � l.2/a1

�
ˇ D 0�

l.1/a1 � l.3/a1
�
ˇ D 0

In a balanced design, where �ij denotes the mean response if A is at level i and B is at level j, this
hypothesis is equivalent to H W�11 D �12 D �13. The SLICEDIFF option considers the three rows
of La1 in turn and performs tests of the difference between pairs of rows. How these differences are
constructed depends on the SLICEDIFFTYPE= option. By default, all pairwise differences within
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the subset of L are considered; in the example this corresponds to tests of the form

H W
�
l.1/a1 � l.2/a1

�
ˇ D 0

H W
�
l.1/a1 � l.3/a1

�
ˇ D 0

H W
�
l.2/a1 � l.3/a1

�
ˇ D 0

In the example, with a = 4 and b = 3, the second LSMEANS statement produces four sets of least
squares means differences. Within each set, factor A is held fixed at a particular level and each set
consists of three comparisons.

When the ADJUST= option is specified, the GLIMMIX procedure also adjusts the tests for multi-
plicity. The adjustment is based on the number of comparisons within each level of the SLICEDIFF=
effect; see the SLICEDIFFTYPE= option. The Nelson adjustment is not available for slice differ-
ences.

SLICEDIFFTYPE< =difftype >

SIMPLEDIFFTYPE< =difftype >
determines the type of simple effect differences produced with the SLICEDIFF= option.

The possible values for the difftype are ALL, CONTROL, CONTROLL, and CONTROLU. The
difftype ALL requests all simple effects differences, and it is the default. The difftype CONTROL
requests the differences with a control, which, by default, is the first level of each of the specified
LSMEANS effects.

To specify which levels of the effects are the controls, list the quoted formatted values in parentheses
after the keyword CONTROL. For example, if the effects A, B, and C are classification variables, each
having three levels (1, 2, and 3), the following LSMEANS statement specifies the (1,3) level of A*B
as the control:

lsmeans A*B / slicediff=(A B)
slicedifftype=control('1' '3');

This LSMEANS statement first produces simple effects differences holding the levels of A fixed, and
then it produces simple effects differences holding the levels of B fixed. In the former case, level ’3’
of B serves as the control level. In the latter case, level ’1’ of A serves as the control.

For multiple effects, the results depend upon the order of the list, and so you should check the output
to make sure that the controls are correct.

Two-tailed tests and confidence limits are associated with the CONTROL difftype. For one-tailed
results, use either the CONTROLL or CONTROLU difftype. The CONTROLL difftype tests whether
the noncontrol levels are significantly smaller than the control; the upper confidence limits for the
control minus the noncontrol levels are considered to be infinity and are displayed as missing. Con-
versely, the CONTROLU difftype tests whether the noncontrol levels are significantly larger than the
control; the upper confidence limits for the noncontrol levels minus the control are considered to be
infinity and are displayed as missing.
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STEPDOWN< (step-down options) >
requests that multiple comparison adjustments for the p-values of LS-mean differences be further
adjusted in a step-down fashion. Step-down methods increase the power of multiple comparisons by
taking advantage of the fact that a p-value will never be declared significant unless all smaller p-values
are also declared significant. Note that the STEPDOWN adjustment combined with ADJUST=BON
corresponds to the methods of Holm (1979) and “Method 2” of Shaffer (1986); this is the default.
Using step-down-adjusted p-values combined with ADJUST=SIMULATE corresponds to the method
of Westfall (1997).

If the degrees-of-freedom method is DDFM=KENWARDROGER or DDFM=SATTERTHWAITE,
then step-down-adjusted p-values are produced only if the ADJDFE=ROW option is in effect.

Also, STEPDOWN affects only p-values, not confidence limits. For ADJUST=SIMULATE, the gen-
eralized least squares hybrid approach of Westfall (1997) is employed to increase Monte Carlo accu-
racy.

You can specify the following step-down options in parentheses:

MAXTIME=n
specifies the time (in seconds) to spend computing the maximal logically consistent sequential
subsets of equality hypotheses for TYPE=LOGICAL. The default is MAXTIME=60. If the
MAXTIME value is exceeded, the adjusted tests are not computed. When this occurs, you can
try increasing the MAXTIME value. However, note that there are common multiple compar-
isons problems for which this computation requires a huge amount of time—for example, all
pairwise comparisons between more than 10 groups. In such cases, try to use TYPE=FREE (the
default) or TYPE=LOGICAL(n) for small n.

REPORT
specifies that a report on the step-down adjustment should be displayed, including a listing of
the sequential subsets (Westfall 1997) and, for ADJUST=SIMULATE, the step-down simulation
results.

TYPE=LOGICAL< (n) >

TYPE=FREE
If you specify TYPE=LOGICAL, the step-down adjustments are computed by using maximal
logically consistent sequential subsets of equality hypotheses (Shaffer 1986; Westfall 1997).
Alternatively, for TYPE=FREE, sequential subsets are computed ignoring logical constraints.
The TYPE=FREE results are more conservative than those for TYPE=LOGICAL, but they can
be much more efficient to produce for many comparisons. For example, it is not feasible to take
logical constraints between all pairwise comparisons of more than 10 groups. For this reason,
TYPE=FREE is the default.

However, you can reduce the computational complexity of taking logical constraints into ac-
count by limiting the depth of the search tree used to compute them, specifying the optional
depth parameter as a number n in parentheses after TYPE=LOGICAL. As with TYPE=FREE,
results for TYPE=LOGICAL(n) are conservative relative to the true TYPE=LOGICAL results,
but even for TYPE=LOGICAL(0) they can be appreciably less conservative than TYPE=FREE
and they are computationally feasible for much larger numbers of comparisons. If you do not
specify n or if n = –1, the full search tree is used.
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LSMESTIMATE Statement
LSMESTIMATE fixed-effect < ’label’ > values < divisor=n >

< , < ’label’ > values < divisor=n > > < , . . . >
< / options > ;

The LSMESTIMATE statement provides a mechanism for obtaining custom hypothesis tests among the
least squares means. In contrast to the hypotheses tested with the ESTIMATE or CONTRAST statements,
the LSMESTIMATE statement enables you to form linear combinations of the least squares means, rather
than linear combination of fixed-effects parameter estimates and/or random-effects solutions. Multiple-row
sets of coefficients are permitted.

The computation of an LSMESTIMATE involves two coefficient matrices. Suppose that the fixed-effect
has nl levels. Then the LS-means are formed as L1b̌, where L1 is a .nl � p/ coefficient matrix. The
.k�nl/ coefficient matrix K is formed from the values that you supply in the k rows of the LSMESTIMATE
statement. The least squares means estimates then represent the .k � 1/ vector

KL1ˇ D Lˇ

The GLIMMIX procedure supports nonpositional syntax for the coefficients (values) in the LSMESTI-
MATE statement. For details see the section “Positional and Nonpositional Syntax for Contrast Coeffi-
cients” on page 3097.

PROC GLIMMIX produces a t test for each row of coefficients specified in the LSMESTIMATE statement.
You can adjust p-values and confidence intervals for multiplicity with the ADJUST= option. You can obtain
an F test of single-row or multirow LSMESTIMATEs with the FTEST option.

Note that in contrast to a multirow estimate in the ESTIMATE statement, you specify only a single fixed
effect in the LSMESTIMATE statement. The row labels are optional and follow the effects specification.
For example, the following statements fit a split-split-plot design and compare the average of the third and
fourth LS-mean of the whole-plot factor A to the first LS-mean of the factor:

proc glimmix;
class a b block;
model y = a b a*b / s;
random int a / sub=block;
lsmestimate A 'a1 vs avg(a3,a4)' 2 0 -1 -1 divisor=2;

run;

The order in which coefficients are assigned to the least squares means corresponds to the order in which
they are displayed in the “Least Squares Means” table. You can use the ELSM option to see how coefficients
are matched to levels of the fixed-effect.

The optional divisor=n specification enables you to assign a separate divisor to each row of the LSMES-
TIMATE. You can also assign divisor values through the DIVISOR= option. See the documentation that
follows for the interaction between the two ways of specifying divisors.

Many options of the LSMESTIMATE statement affect the computation of least squares means—for ex-
ample, the AT=, BYLEVEL, and OM options. See the documentation for the LSMEANS statement for
details.

Table 41.9 summarizes the options available in the LSMESTIMATE statement.
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Table 41.9 LSMESTIMATE Statement Options

Option Description

Construction and Computation of LS-Means
AT Modifies covariate values in computing LS-means
BYLEVEL Computes separate margins
DIVISOR= Specifies a list of values to divide the coefficients
OM= Specifies the weighting scheme for LS-means computation as determined

by a data set
SINGULAR= Tunes estimability checking

Degrees of Freedom and p-values
ADJDFE= Determines denominator degrees of freedom when p-values and confidence

limits are adjusted for multiple comparisons
ADJUST= Determines the method for multiple comparison adjustment of LS-means

differences
ALPHA=˛ Determines the confidence level (1 � ˛)
CHISQ Requests a chi-square test in addition to the F test
DF= Assigns a specific value to degrees of freedom for tests and confidence

limits
FTEST Produces an F test
LOWER Performs one-sided, lower-tailed inference
STEPDOWN Adjusts multiple comparison p-values further in a step-down fashion
UPPER Performs one-sided, upper-tailed inference

Statistical Output
CL Constructs confidence limits for means and mean differences
CORR Displays the correlation matrix of LS-means
COV Displays the covariance matrix of LS-means
E Prints the L matrix
ELSM Prints the K matrix
JOINT Produces a joint F or chi-square test for the LS-means and LS-means

differences

Generalized Linear Modeling
EXP Exponentiates and displays LS-means estimates
ILINK Computes and displays estimates and standard errors of LS-means (but not

differences) on the inverse linked scale

You can specify the following options in the LSMESTIMATE statement after a slash (/).

ADJDFE=SOURCE

ADJDFE=ROW
specifies how denominator degrees of freedom are determined when p-values and confidence limits
are adjusted for multiple comparisons with the ADJUST= option. When you do not specify the
ADJDFE= option, or when you specify ADJDFE=SOURCE, the denominator degrees of freedom for
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multiplicity-adjusted results are the denominator degrees of freedom for the LS-mean effect in the
“Type III Tests of Fixed Effects” table.

The ADJDFE=ROW setting is useful if you want multiplicity adjustments to take into account that
denominator degrees of freedom are not constant across estimates. This can be the case, for exam-
ple, when DDFM=SATTERTHWAITE or DDFM=KENWARDROGER is specified in the MODEL
statement.

ADJUST=BON

ADJUST=SCHEFFE

ADJUST=SIDAK

ADJUST=SIMULATE< (simoptions) >

ADJUST=T
requests a multiple comparison adjustment for the p-values and confidence limits for the LS-mean
estimates. The adjusted quantities are produced in addition to the unadjusted p-values and confi-
dence limits. Adjusted confidence limits are produced if the CL or ALPHA= option is in effect.
For a description of the adjustments, see Chapter 42, “The GLM Procedure,” and Chapter 61, “The
MULTTEST Procedure,” as well as the documentation for the ADJUST= option in the LSMEANS
statement.

Note that not all adjustment methods of the LSMEANS statement are available for the LSMESTI-
MATE statement. Multiplicity adjustments in the LSMEANS statement are designed specifically for
differences of least squares means.

If you specify the STEPDOWN option, the p-values are further adjusted in a step-down fashion.

ALPHA=number
requests that a t-type confidence interval be constructed for each of the LS-means with confidence
level 1 – number. The value of number must be between 0 and 1; the default is 0.05.

AT variable=value

AT (variable-list)=(value-list)

AT MEANS
enables you to modify the values of the covariates used in computing LS-means. See the AT option
in the LSMEANS statement for details.

BYLEVEL
requests that PROC GLIMMIX compute separate margins for each level of the LSMEANS effect.

The standard LS-means have equal coefficients across classification effects. The BYLEVEL option
changes these coefficients to be proportional to the observed margins. This adjustment is reasonable
when you want your inferences to apply to a population that is not necessarily balanced but has the
margins observed in the input data set. In this case, the resulting LS-means are actually equal to
raw means for fixed-effects models and certain balanced random-effects models, but their estimated
standard errors account for the covariance structure that you have specified. If a WEIGHT statement
is specified, PROC GLIMMIX uses weighted margins to construct the LS-means coefficients.

If the AT option is specified, the BYLEVEL option disables it.
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CHISQ
requests that chi-square tests be performed in addition to F tests, when you request an F test with the
FTEST option.

CL
requests that t-type confidence limits be constructed for each of the LS-means. If DDFM=NONE, then
PROC GLIMMIX uses infinite degrees of freedom for this test, essentially computing a z interval. The
confidence level is 0.95 by default; this can be changed with the ALPHA= option.

CORR
displays the estimated correlation matrix of the linear combination of the least squares means.

COV
displays the estimated covariance matrix of the linear combination of the least squares means.

DF=number
specifies the degrees of freedom for the t test and confidence limits. The default is the denominator
degrees of freedom taken from the “Type III Tests of Fixed Effects” table corresponding to the LS-
means effect.

DIVISOR=value-list
specifies a list of values by which to divide the coefficients so that fractional coefficients can be
entered as integer numerators. If you do not specify value-list, a default value of 1.0 is assumed.
Missing values in the value-list are converted to 1.0.

If the number of elements in value-list exceeds the number of rows of the estimate, the extra values
are ignored. If the number of elements in value-list is less than the number of rows of the estimate,
the last value in value-list is carried forward.

If you specify a row-specific divisor as part of the specification of the estimate row, this value mul-
tiplies the corresponding value in the value-list. For example, the following statement divides the
coefficients in the first row by 8, and the coefficients in the third and fourth row by 3:

lsmestimate A 'One vs. two' 8 -8 divisor=2,
'One vs. three' 1 0 -1 ,
'One vs. four' 3 0 0 -3 ,
'One vs. five' 3 0 0 0 -3 / divisor=4,.,3;

Coefficients in the second row are not altered.

E
requests that the L coefficients of the estimable function be displayed. These are the coefficients that
apply to the fixed-effect parameter estimates. The E option displays the coefficients that you would
need to enter in an equivalent ESTIMATE statement.

ELSM
requests that the K matrix coefficients be displayed. These are the coefficients that apply to the LS-
means. This option is useful to ensure that you assigned the coefficients correctly to the LS-means.
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EXP
requests exponentiation of the least squares means estimate. When you model data with the logit
link function and the estimate represents a log odds ratio, the EXP option produces an odds ratio.
See the section “Odds and Odds Ratio Estimation” on page 3090 for important details concerning
the computation and interpretation of odds and odds ratio results with the GLIMMIX procedure. If
you specify the CL or ALPHA= option, the (adjusted) confidence limits for the estimate are also
exponentiated.

FTEST< (joint-test-options) >

JOINT< (joint-test-options) >
produces an F test that jointly tests the rows of the LSMESTIMATE against zero. If the LOWER
or UPPER options are in effect or if you specify boundary values with the BOUNDS= suboption,
the GLIMMIX procedure computes a simulation-based p-value for the constrained joint test. For
more information about these simulation-based p-values, see the section “Joint Hypothesis Tests with
Complex Alternatives, the Chi-Bar-Square Statistic” on page 451 in Chapter 19, “Shared Concepts
and Topics.” You can specify the following joint-test-options in parentheses:

ACC=

specifies the accuracy radius for determining the necessary sample size in the simulation-based
approach of Silvapulle and Sen (2004) for tests with order restrictions. The value of 
 must be
strictly between 0 and 1; the default value is 0.005.

BOUNDS=value-list
specifies boundary values for the estimable linear function. The null value of the hypothesis
is always zero. If you specify a positive boundary value z, the hypotheses are H W � D 0 vs.
HaW � > 0 with the added constraint that � < z. The same is true for negative boundary values.
The alternative hypothesis is thenHaW � < 0 subject to the constraint � > �jzj. If you specify a
missing value, the hypothesis is assumed to be two-sided. The BOUNDS option enables you to
specify sets of one- and two-sided joint hypotheses. If all values in value-list are set to missing,
the procedure performs a simulation-based p-value calculation for a two-sided test.

EPS=�
specifies the accuracy confidence level for determining the necessary sample size in the
simulation-based approach of Silvapulle and Sen (2004) for F tests with order restrictions. The
value of � must be strictly between 0 and 1; the default value is 0.01.

LABEL=’label’
enables you to assign a label to the joint test that identifies the results in the “LSMFtest” table.
If you do not specify a label, the first non-default label for the LSMESTIMATE rows is used to
label the joint test.

NSAMP=n
specifies the number of samples for the simulation-based method of Silvapulle and Sen (2004).
If n is not specified, it is constructed from the values of the ALPHA=˛, the ACC=
 , and the
EPS=� options. With the default values for 
 , �, and ˛ (0.005, 0.01, and 0.05, respectively),
NSAMP=12,604 by default.
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ILINK
requests that the estimate and its standard error also be reported on the scale of the mean (the inverse
linked scale). PROC GLIMMIX computes the value on the mean scale by applying the inverse link to
the estimate. The interpretation of this quantity depends on the coefficients that are specified in your
LSMESTIMATE statement and the link function. For example, in a model for binary data with a logit
link, the following LSMESTIMATE statement computes

q D
1

1C expf�.�1 � �2/g

where �1 and �2 are the least squares means associated with the first two levels of the classification
effect A:

proc glimmix;
class A;
model y = A / dist=binary link=logit;
lsmestimate A 1 -1 / ilink;

run;

The quantity q is not the difference of the probabilities associated with the two levels,

�1 � �2 D
1

1C expf��1g
�

1

1C expf��2g

The standard error of the inversely linked estimate is based on the delta method. If you also specify
the CL or ALPHA= option, the GLIMMIX procedure computes confidence intervals for the inversely
linked estimate. These intervals are obtained by applying the inverse link to the confidence intervals
on the linked scale.

JOINT< (joint-test-options) >
is an alias for the FTEST option.

LOWER

LOWERTAILED
requests that the p-value for the t test be based only on values that are less than the test statistic. A
two-tailed test is the default. A lower-tailed confidence limit is also produced if you specify the CL
or ALPHA= option.

Note that for ADJUST=SCHEFFE the one-sided adjusted confidence intervals and one-sided adjusted
p-values are the same as the corresponding two-sided statistics, because this adjustment is based on
only the right tail of the F distribution.

If you request an F test with the FTEST option, then a one-sided left-tailed order restriction is applied
to all estimable functions, and the corresponding chi-bar-square statistic of Silvapulle and Sen (2004)
is computed in addition to the two-sided, standard F or chi-square statistic. See the description of the
FTEST option for information about how to control the computation of the simulation-based chi-bar-
square statistic.
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OBSMARGINS

OM
specifies a potentially different weighting scheme for the computation of LS-means coefficients. The
standard LS-means have equal coefficients across classification effects; however, the OM option
changes these coefficients to be proportional to those found in the input data set. See the OBS-
MARGINS option in the LSMEANS statement for further details.

SINGULAR=number
tunes the estimability checking as documented for the CONTRAST statement.

STEPDOWN< (step-down-options) >
requests that multiplicity adjustments for the p-values of LS-mean estimates be further adjusted in a
step-down fashion. Step-down methods increase the power of multiple testing procedures by taking
advantage of the fact that a p-value will never be declared significant unless all smaller p-values
are also declared significant. Note that the STEPDOWN adjustment combined with ADJUST=BON
corresponds to the Holm (1979) and “Method 2” of Shaffer (1986); this is the default. Using step-
down-adjusted p-values combined with ADJUST=SIMULATE corresponds to the method of Westfall
(1997).

If the degrees-of-freedom method is DDFM=KENWARDROGER or DDFM=SATTERTHWAITE,
then step-down-adjusted p-values are produced only if the ADJDFE=ROW option is in effect.

Also, the STEPDOWN option affects only p-values, not confidence limits. For AD-
JUST=SIMULATE, the generalized least squares hybrid approach of Westfall (1997) is employed to
increase Monte Carlo accuracy.

You can specify the following step-down-options in parentheses:

MAXTIME=n
specifies the time (in seconds) to spend computing the maximal logically consistent sequential
subsets of equality hypotheses for TYPE=LOGICAL. The default is MAXTIME=60. If the
MAXTIME value is exceeded, the adjusted tests are not computed. When this occurs, you can
try increasing the MAXTIME value. However, note that there are common multiple compar-
isons problems for which this computation requires a huge amount of time—for example, all
pairwise comparisons between more than 10 groups. In such cases, try to use TYPE=FREE (the
default) or TYPE=LOGICAL(n) for small n.

ORDER=PVALUE

ORDER=ROWS
specifies the order in which the step-down tests are performed. ORDER=PVALUE is the default,
with LS-mean estimates being declared significant only if all LS-mean estimates with smaller
(unadjusted) p-values are significant. If you specify ORDER=ROWS, then significances are
evaluated in the order in which they are specified.

REPORT
specifies that a report on the step-down adjustment be displayed, including a listing of the se-
quential subsets (Westfall 1997) and, for ADJUST=SIMULATE, the step-down simulation re-
sults.
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TYPE=LOGICAL< (n) >

TYPE=FREE
If you specify TYPE=LOGICAL, the step-down adjustments are computed by using maximal
logically consistent sequential subsets of equality hypotheses (Shaffer 1986; Westfall 1997). Al-
ternatively, for TYPE=FREE, logical constraints are ignored when sequential subsets are com-
puted. The TYPE=FREE results are more conservative than those for TYPE=LOGICAL, but
they can be much more efficient to produce for many estimates. For example, it is not feasible
to take logical constraints between all pairwise comparisons of more than about 10 groups. For
this reason, TYPE=FREE is the default.

However, you can reduce the computational complexity of taking logical constraints into ac-
count by limiting the depth of the search tree used to compute them, specifying the optional
depth parameter as a number n in parentheses after TYPE=LOGICAL. As with TYPE=FREE,
results for TYPE=LOGICAL(n) are conservative relative to the true TYPE=LOGICAL results,
but even for TYPE=LOGICAL(0), they can be appreciably less conservative than TYPE=FREE,
and they are computationally feasible for much larger numbers of estimates. If you do not spec-
ify n or if n = –1, the full search tree is used.

UPPER

UPPERTAILED
requests that the p-value for the t test be based only on values that are greater than the test statistic. A
two-tailed test is the default. An upper-tailed confidence limit is also produced if you specify the CL
or ALPHA= option.

Note that for ADJUST=SCHEFFE the one-sided adjusted confidence intervals and one-sided adjusted
p-values are the same as the corresponding two-sided statistics, because this adjustment is based on
only the right tail of the F distribution.

If you request a joint test with the FTEST option, then a one-sided right-tailed order restriction is
applied to all estimable functions, and the corresponding chi-bar-square statistic of Silvapulle and Sen
(2004) is computed in addition to the two-sided, standard F or chi-square statistic. See the FTEST
option for information about how to control the computation of the simulation-based chi-bar-square
statistic.

MODEL Statement
MODEL response < (response-options) > = < fixed-effects > < / model-options > ;

MODEL events/trials = < fixed-effects > < / model-options > ;

The MODEL statement is required and names the dependent variable and the fixed effects. The fixed-effects
determine the X matrix of the model (see the section “Notation for the Generalized Linear Mixed Model”
for details). The specification of effects is the same as in the GLM or MIXED procedure. In contrast to
PROC GLM, you do not specify random effects in the MODEL statement. However, in contrast to PROC
GLM and PROC MIXED, continuous variables on the left and right side of the MODEL statement can be
computed through PROC GLIMMIX programming statements.

An intercept is included in the fixed-effects model by default. It can be removed with the NOINT option.
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The dependent variable can be specified by using either the response syntax or the events/trials syntax.
The events/trials syntax is specific to models for binomial data. A binomial(n,�) variable is the sum of n
independent Bernoulli trials with event probability � . Each Bernoulli trial results in either an event or a
nonevent (with probability 1 � �). You use the events/trials syntax to indicate to the GLIMMIX procedure
that the Bernoulli outcomes are grouped. The value of the second variable, trials, gives the number n of
Bernoulli trials. The value of the first variable, events, is the number of events out of n. The values of both
events and (trials–events) must be nonnegative and the value of trials must be positive. Observations for
which these conditions are not met are excluded from the analysis. If the events/trials syntax is used, the
GLIMMIX procedure defaults to the binomial distribution. The response is then the events variable. The
trials variable is accounted in model fitting as an additional weight. If you use the response syntax, the
procedure defaults to the normal distribution.

There are two sets of options in the MODEL statement. The response-options determine how the GLIM-
MIX procedure models probabilities for binary and multinomial data. The model-options control other
aspects of model formation and inference. Table 41.10 summarizes the options available in the MODEL
statement. These are subsequently discussed in detail in alphabetical order by option category.

Table 41.10 MODEL Statement Options

Option Description

Response Variable Options
DESCENDING Reverses the order of response categories
EVENT= Specifies the event category in binary models
ORDER= Specifies the sort order for the response variable
REFERENCE= Specifies the reference category in generalized logit models

Model Building
DIST= Specifies the response distribution
LINK= Specifies the link function
NOINT Excludes fixed-effect intercept from model
OFFSET= Specifies the offset variable for linear predictor

Statistical Computations
ALPHA=˛ Determines the confidence level (1 � ˛)
CHISQ Requests chi-square tests
DDF= Specifies the denominator degrees of freedom (list)
DDFM= Specifies the method for computing denominator degrees of freedom
HTYPE= Selects the type of hypothesis test
LWEIGHT Determines how weights are used
NOCENTER Suppresses centering and scaling of X columns during the estimation phase
REFLINP Specifies a value for the linear predictor
ZETA= Tunes sensitivity in computing Type III functions

Statistical Output
CL Displays confidence limits for fixed-effects parameter estimates
CORRB Displays the correlation matrix of fixed-effects parameter estimates
COVB Displays the covariance matrix of fixed-effects parameter estimates
COVBI Displays the inverse covariance matrix of fixed-effects parameter estimates
E, E1, E2, E3 Displays the L matrix coefficients
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Table 41.10 continued

Option Description

INTERCEPT Adds a row for the intercept to test tables
ODDSRATIO Displays odds ratios and confidence limits
SOLUTION Displays fixed-effects parameter estimates (and scale parameter in GLM

models)
STDCOEF Displays standardized coefficients

Response Variable Options

Response variable options determine how the GLIMMIX procedure models probabilities for binary and
multinomial data.

You can specify the following options by enclosing them in parentheses after the response variable. See the
section “Response-Level Ordering and Referencing” on page 3100 for more detail and examples.

DESCENDING

DESC
reverses the order of the response categories. If both the DESCENDING and ORDER= options are
specified, PROC GLIMMIX orders the response categories according to the ORDER= option and
then reverses that order.

EVENT=’category ’ | keyword
specifies the event category for the binary response model. PROC GLIMMIX models the probability
of the event category. The EVENT= option has no effect when there are more than two response
categories. You can specify the value (formatted, if a format is applied) of the event category in
quotes, or you can specify one of the following keywords:

FIRST
designates the first ordered category as the event. This is the default.

LAST
designates the last ordered category as the event.

ORDER=DATA | FORMATTED | FREQ | INTERNAL
specifies the sort order for the levels of the response variable. When ORDER=FORMATTED (the
default) for numeric variables for which you have supplied no explicit format (that is, for which there
is no corresponding FORMAT statement in the current PROC GLIMMIX run or in the DATA step
that created the data set), the levels are ordered by their internal (numeric) value. If you specify
the ORDER= option in the MODEL statement and the ORDER= option in the PROC GLIMMIX
statement, the former takes precedence. The following table shows the interpretation of the ORDER=
values:

Value of ORDER= Levels Sorted By

DATA order of appearance in the input data set

FORMATTED external formatted value, except for numeric variables
with no explicit format, which are sorted by their unfor-
matted (internal) value
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Table 41.10 continued

Value of ORDER= Levels Sorted By

FREQ descending frequency count; levels with the most obser-
vations come first in the order

INTERNAL unformatted value

By default, ORDER=FORMATTED. For the FORMATTED and INTERNAL values, the sort order
is machine dependent.

For more information about sort order, see the chapter on the SORT procedure in the Base SAS
Procedures Guide and the discussion of BY-group processing in SAS Language Reference: Concepts.

REFERENCE=’category ’ | keyword

REF=’category ’ | keyword
specifies the reference category for the generalized logit model and the binary response model. For
the generalized logit model, each nonreference category is contrasted with the reference category. For
the binary response model, specifying one response category as the reference is the same as specifying
the other response category as the event category. You can specify the value (formatted if a format is
applied) of the reference category in quotes, or you can specify one of the following keywords:

FIRST
designates the first ordered category as the reference category.

LAST
designates the last ordered category as the reference category. This is the default.

Model Options

ALPHA=number
requests that a t-type confidence interval be constructed for each of the fixed-effects parameters with
confidence level 1 – number. The value of number must be between 0 and 1; the default is 0.05.

CHISQ
requests that chi-square tests be performed for all specified effects in addition to the F tests. Type III
tests are the default; you can produce the Type I and Type II tests by using the HTYPE= option.

CL
requests that t-type confidence limits be constructed for each of the fixed-effects parameter estimates.
The confidence level is 0.95 by default; this can be changed with the ALPHA= option.

CORRB
produces the correlation matrix from the approximate covariance matrix of the fixed-effects parameter
estimates.

COVB< (DETAILS) >
produces the approximate variance-covariance matrix of the fixed-effects parameter estimates b̌. In
a generalized linear mixed model this matrix typically takes the form .X0bV�1X/� and can be ob-
tained by sweeping the mixed model equations; see the section “Estimated Precision of Estimates” on
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page 3056. In a model without random effects, it is obtained from the inverse of the observed or ex-
pected Hessian matrix. Which Hessian is used in the computation depends on whether the procedure is
in scoring mode (see the SCORING= option in the PROC GLIMMIX statement) and whether the EX-
PHESSIAN option is in effect. Note that if you use EMPIRICAL= or DDFM=KENWARDROGER,
the matrix displayed by the COVB option is the empirical (sandwich) estimator or the adjusted esti-
mator, respectively.

The DETAILS suboption of the COVB option enables you to obtain a table of statistics about the
covariance matrix of the fixed effects. If an adjusted estimator is used because of the EMPIRICAL=
or DDFM=KENWARDROGER option, the GLIMMIX procedure displays statistics for the adjusted
and unadjusted estimators as well as statistics comparing them. This enables you to diagnose, for
example, changes in rank (because of an insufficient number of subjects for the empirical estimator)
and to assess the extent of the covariance adjustment. In addition, the GLIMMIX procedure then
displays the unadjusted (=model-based) covariance matrix of the fixed-effects parameter estimates.
For more details, see the section “Exploring and Comparing Covariance Matrices” on page 3080.

COVBI
produces the inverse of the approximate covariance matrix of the fixed-effects parameter estimates.

DDF=value-list

DF=value-list
enables you to specify your own denominator degrees of freedom for the fixed effects. The value-list
specification is a list of numbers or missing values (.) separated by commas. The degrees of freedom
should be listed in the order in which the effects appear in the “Type III Tests of Fixed Effects” table.
If you want to retain the default degrees of freedom for a particular effect, use a missing value for its
location in the list. For example, the statement assigns 3 denominator degrees of freedom to A and
4.7 to A*B, while those for B remain the same:

model Y = A B A*B / ddf=3,.,4.7;

If you select a degrees-of-freedom method with the DDFM= option, then nonmissing, positive values
in value-list override the degrees of freedom for the particular effect. For example, the statement
assigns 3 and 6 denominator degrees of freedom in the test of the A main effect and the A*B interaction,
respectively:

model Y = A B A*B / ddf=3,.,6 ddfm=Satterth;

The denominator degrees of freedom for the test for the B effect are determined from a Satterthwaite
approximation.

Note that the DDF= and DDFM= options determine the degrees of freedom in the “Type I Tests of
Fixed Effects,” “Type II Tests of Fixed Effects,” and “Type III Tests of Fixed Effects” tables. These
degrees of freedom are also used in determining the degrees of freedom in tests and confidence inter-
vals from the CONTRAST, ESTIMATE, LSMEANS, and LSMESTIMATE statements. Exceptions
from this rule are noted in the documentation for the respective statements.

DDFM=method
specifies the method for computing the denominator degrees of freedom for the tests of fixed effects
that result from the MODEL, CONTRAST, ESTIMATE, LSMEANS, and LSMESTIMATE state-
ments.
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You can specify the following methods:

BETWITHIN

BW
assigns within-subject degrees of freedom to a fixed effect if the fixed effect changes within
a subject, and between-subject degrees of freedom otherwise. This method is the default for
models with only R-side random effects and a SUBJECT= option. Computational details can be
found in the section “Degrees of Freedom Methods” on page 3075.

CONTAIN

CON
invokes the containment method to compute denominator degrees of freedom. This method is
the default when the model contains G-side random effects. Computational details can be found
in the section “Degrees of Freedom Methods” on page 3075.

KENWARDROGER< (FIRSTORDER) >

KENROGER< (FIRSTORDER) >

KR< (FIRSTORDER) >
applies the (prediction) standard error and degrees-of-freedom correction detailed by Kenward
and Roger (1997). This approximation involves adjusting the estimated variance-covariance
matrix of the fixed and random effects in a manner similar to that of Prasad and Rao (1990);
Harville and Jeske (1992); Kackar and Harville (1984). Satterthwaite-type degrees of freedom
are then computed based on this adjustment. Computational details can be found in the section
“Degrees of Freedom Methods” on page 3075.

KENWARDROGER2

KENROGER2

KR2
applies the (prediction) standard error and degrees-of-freedom correction that are detailed by
Kenward and Roger (2009). This correction further reduces the precision estimator bias for the
fixed and random effects under nonlinear covariance structures. Computational details can be
found in the section “Degrees of Freedom Methods” on page 3075.

NONE
specifies that no denominator degrees of freedom be applied. PROC GLIMMIX then essen-
tially assumes that infinite degrees of freedom are available in the calculation of p-values. The
p-values for t tests are then identical to p-values that are derived from the standard normal dis-
tribution. In the case of F tests, the p-values are equal to those of chi-square tests that are
determined as follows: if Fobs is the observed value of the F test with l numerator degrees of
freedom, then

p D PrfFl;1 > Fobsg D Prf�2l > lFobsg
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Regardless of the DDFM= method, you can obtain these chi-square p-values with the CHISQ
option in the MODEL statement.

RESIDUAL

RES
performs all tests by using the residual degrees of freedom, n� rank.X/, where n is the sum of
the frequencies of observations or the sum of frequencies of event/trials pairs. This method is
the default degrees of freedom method for GLMs and overdispersed GLMs.

SATTERTHWAITE

SAT
performs a general Satterthwaite approximation for the denominator degrees of freedom in a
generalized linear mixed model. This method is a generalization of the techniques that are de-
scribed in Giesbrecht and Burns (1985); McLean and Sanders (1988); Fai and Cornelius (1996).
The method can also include estimated random effects. Computational details can be found in
the section “Degrees of Freedom Methods” on page 3075.

When the asymptotic variance matrix of the covariance parameters is found to be singular, a general-
ized inverse is used. Covariance parameters with zero variance then do not contribute to the degrees
of freedom adjustment for DDFM=SATTERTH and DDFM=KENWARDROGER, and a message is
written to the log.

DISTRIBUTION=keyword

DIST=keyword

D=keyword

ERROR=keyword

E=keyword
specifies the built-in (conditional) probability distribution of the data. If you specify the DIST= option
and you do not specify a user-defined link function, a default link function is chosen according to the
following table. If you do not specify a distribution, the GLIMMIX procedure defaults to the normal
distribution for continuous response variables and to the multinomial distribution for classification or
character variables, unless the events/trial syntax is used in the MODEL statement. If you choose the
events/trial syntax, the GLIMMIX procedure defaults to the binomial distribution.

Table 41.11 lists the values of the DIST= option and the corresponding default link functions. For
the case of generalized linear models with these distributions, you can find expressions for the log-
likelihood functions in the section “Maximum Likelihood” on page 3047.
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Table 41.11 Keyword Values of the DIST= Option

Default Link Numeric
DIST= Distribution Function Value

BETA beta logit 12
BINARY binary logit 4
BINOMIAL | BIN | B binomial logit 3
EXPONENTIAL | EXPO exponential log 9
GAMMA | GAM gamma log 5
GAUSSIAN | G | NORMAL | N normal identity 1
GEOMETRIC | GEOM geometric log 8
INVGAUSS | IGAUSSIAN | IG inverse Gaussian inverse squared 6

(power(–2) )
LOGNORMAL | LOGN lognormal identity 11
MULTINOMIAL | MULTI | MULT multinomial cumulative logit NA
NEGBINOMIAL | NEGBIN | NB negative binomial log 7
POISSON | POI | P Poisson log 2
TCENTRAL | TDIST | T t identity 10

BYOBS(variable) multivariate varied NA

Note that the PROC GLIMMIX default link for the gamma or exponential distribution is not the
canonical link (the reciprocal link).

The numeric value in the last column of Table 41.11 can be used in combination with DIST=BYOBS.
The BYOBS(variable) syntax designates a variable whose value identifies the distribution to which
an observation belongs. If the variable is numeric, its values must match values in the last column of
Table 41.11. If the variable is not numeric, an observation’s distribution is identified by the first four
characters of the distribution’s name in the leftmost column of the table. Distributions whose numeric
value is “NA” cannot be used with DIST=BYOBS.

If the variable in BYOBS(variable) is a data set variable, it can also be used in the CLASS statement
of the GLIMMIX procedure. For example, this provides a convenient method to model multivariate
data jointly while varying fixed-effects components across outcomes. Assume that, for example, for
each patient, a count and a continuous outcome were observed; the count data are modeled as Poisson
data and the continuous data are modeled as gamma variates. The following statements fit a Poisson
and a gamma regression model simultaneously:

proc sort data=yourdata;
by patient;

run;
data yourdata;

set yourdata;
by patient;
if first.patient then dist='POIS' else dist='GAMM';

run;
proc glimmix data=yourdata;

class treatment dist;
model y = dist treatment*dist / dist=byobs(dist);

run;
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The two models have separate intercepts and treatment effects. To correlate the outcomes, you can
share a random effect between the observations from the same patient:

proc glimmix data=yourdata;
class treatment dist patient;
model y = dist treatment*dist / dist=byobs(dist);
random intercept / subject=patient;

run;

Or, you could use an R-side correlation structure:

proc glimmix data=yourdata;
class treatment dist patient;
model y = dist treatment*dist / dist=byobs(dist);
random _residual_ / subject=patient type=un;

run;

Although DIST=BYOBS(variable) is used to model multivariate data, you only need a single response
variable in PROC GLIMMIX. The responses are in “univariate” form. This allows, for example,
different missing value patterns across the responses. It does, however, require that all response
variables be numeric.

The default links that are assigned when DIST=BYOBS is in effect correspond to the respective
default links in Table 41.11.

When you choose DIST=LOGNORMAL, the GLIMMIX procedure models the logarithm of the re-
sponse variable as a normal random variable. That is, the mean and variance are estimated on the
logarithmic scale, assuming a normal distribution, logfY g � N.�; �2/. This enables you to draw
on options that require a distribution in the exponential family—for example, by using a scoring
algorithm in a GLM. To convert means and variances for logfY g into those of Y, use the relationships

EŒY � D expf�g
p
!

VarŒY � D expf2�g!.! � 1/

! D expf�2g

The DIST=T option models the data as a shifted and scaled central t variable. This enables you to
model data with heavy-tailed distributions. If Y denotes the response and X has a t� distribution with
� degrees of freedom, then PROC GLIMMIX models

Y D �C
p
�X

In this parameterization, Y has mean � and variance ��=.� � 2/.

By default, � D 3. You can supply different degrees of freedom for the t variate as in the following
statements:

proc glimmix;
class a b;
model y = b x b*x / dist=tcentral(9.6);
random a;

run;
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The GLIMMIX procedure does not accept values for the degrees of freedom parameter less than 3.0.
If the t distribution is used with the DIST=BYOBS(variable) specification, the degrees of freedom are
fixed at � D 3. For mixed models where parameters are estimated based on linearization, choosing
DIST=T instead of DIST=NORMAL affects only the residual variance, which decreases by the factor
�=.� � 2/.

Note that in SAS 9.1, the GLIMMIX procedure modeled Y D �C ��
q
��2
�
X . The scale parameter

of the parameterizations are related as � D �� � �� � .� � 2/=�.

The DIST=BETA option implements the parameterization of the beta distribution in Ferrari and
Cribari-Neto (2004). If Y has a beta.˛; ˇ/ density, so that EŒY � D � D ˛=.˛ C ˇ/, this param-
eterization uses the variance function a.�/ D �.1 � �/ and VarŒY � D a.�/=.1C �/.

See the section “Maximum Likelihood” on page 3047 for the log likelihoods of the distributions fitted
by the GLIMMIX procedure.

E
requests that Type I, Type II, and Type III L matrix coefficients be displayed for all specified effects.

E1 | EI
requests that Type I L matrix coefficients be displayed for all specified effects.

E2 | EII
requests that Type II L matrix coefficients be displayed for all specified effects.

E3 | EIII
requests that Type III L matrix coefficients be displayed for all specified effects.

HTYPE=value-list
indicates the type of hypothesis test to perform on the fixed effects. Valid entries for values in the
value-list are 1, 2, and 3, corresponding to Type I, Type II, and Type III tests. The default value is
3. You can specify several types by separating the values with a comma or a space. The ODS table
names are “Tests1,” “Tests2,” and “Tests3” for the Type I, Type II, and Type III tests, respectively.

INTERCEPT
adds a row to the tables for Type I, II, and III tests corresponding to the overall intercept.

LINK=keyword
specifies the link function in the generalized linear mixed model. The keywords and their associated
built-in link functions are shown in Table 41.12.

Table 41.12 Built-in Link Functions of the GLIMMIX Procedure

Link Numeric
LINK= Function g.�/ D � D Value

CUMCLL | CCLL cumulative log.� log.1 � �// NA
complementary log-log

CUMLOGIT | CLOGIT cumulative logit log.
=.1 � �// NA
CUMLOGLOG cumulative log-log � log.� log.�// NA
CUMPROBIT | CPROBIT cumulative probit ˆ�1.�/ NA
CLOGLOG | CLL complementary log-log log.� log.1 � �// 5
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Table 41.12 continued

Link Numeric
LINK= Function g.�/ D � D Value

GLOGIT | GENLOGIT generalized logit NA
IDENTITY | ID identity � 1
LOG log log.�/ 4
LOGIT logit log.�=.1 � �// 2
LOGLOG log-log � log.� log.�// 6
PROBIT probit ˆ�1.�/ 3

POWER(�) | POW(�) power with exponent �= number
�
�� if � 6D 0
log.�/ if � D 0

NA

POWERMINUS2 power with exponent -2 1=�2 8
RECIPROCAL | INVERSE reciprocal 1=� 7

BYOBS(variable) varied varied NA

For the probit and cumulative probit links, ˆ�1.�/ denotes the quantile function of the standard nor-
mal distribution. For the other cumulative links, � denotes a cumulative category probability. The
cumulative and generalized logit link functions are appropriate only for the multinomial distribution.
When you choose a cumulative link function, PROC GLIMMIX assumes that the data are ordinal.
When you specify LINK=GLOGIT, the GLIMMIX procedure assumes that the data are nominal (not
ordered).

The numeric value in the rightmost column of Table 41.12 can be used in conjunction with
LINK=BYOBS(variable). This syntax designates a variable whose values identify the link func-
tion associated with an observation. If the variable is numeric, its values must match those in the last
column of Table 41.12. If the variable is not numeric, an observation’s link function is determined by
the first four characters of the link’s name in the first column. Those link functions whose numeric
value is “NA” cannot be used with LINK=BYOBS(variable).

You can define your own link function through programming statements. See the section “User-
Defined Link or Variance Function” on page 3043 for more information about how to specify a link
function. If a user-defined link function is in effect, the specification in the LINK= option is ignored.
If you specify neither the LINK= option nor a user-defined link function, then the default link function
is chosen according to Table 41.11.

LWEIGHT=FIRSTORDER | FIRO

LWEIGHT=NONE

LWEIGHT=VAR
determines how weights are used in constructing the coefficients for Type I through Type III L ma-
trices. The default is LWEIGHT=VAR, and the values of the WEIGHT variable are used in forming
crossproduct matrices. If you specify LWEIGHT=FIRO, the weights incorporate the WEIGHT vari-
able as well as the first-order weights of the linearized model. For LWEIGHT=NONE, the L matrix
coefficients are based on the raw crossproduct matrix, whether a WEIGHT variable is specified or
not.
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NOCENTER
requests that the columns of the X matrix are not centered and scaled. By default, the columns of
X are centered and scaled. Unless the NOCENTER option is in effect, X is replaced by X� during
estimation. The columns of X� are computed as follows:

� In models with an intercept, the intercept column remains the same and the jth entry in row i of
X� is

x�ij D
xij � xjqPn
iD1.xij � xj /

2

� In models without intercept, no centering takes place and the jth entry in row i of X� is

x�ij D
xijqPn

iD1.xij � xj /
2

The effects of centering and scaling are removed when results are reported. For example, if the
covariance matrix of the fixed effects is printed with the COVB option of the MODEL statement, the
covariances are reported in terms of the original parameters, not the centered and scaled versions.
If you specify the STDCOEF option, fixed-effects parameter estimates and their standard errors are
reported in terms of the standardized (scaled and/or centered) coefficients in addition to the usual
results in noncentered form.

NOINT
requests that no intercept be included in the fixed-effects model. An intercept is included by default.

ODDSRATIO< (odds-ratio-options) >

OR< (odds-ratio-options) >
requests estimates of odds ratios and their confidence limits, provided the link function is the logit,
cumulative logit, or generalized logit. Odds ratios are produced for the following:

� classification main effects, if they appear in the MODEL statement

� continuous variables in the MODEL statement, unless they appear in an interaction with a clas-
sification effect

� continuous variables in the MODEL statement at fixed levels of a classification effect, if the
MODEL statement contains an interaction of the two

� continuous variables in the MODEL statement, if they interact with other continuous variables

You can specify the following odds-ratio-options to create customized odds ratio results.

AT var-list=value-list
specifies the reference values for continuous variables in the model. By default, the average
value serves as the reference. Consider, for example, the following statements:

proc glimmix;
class A;
model y = A x A*x / dist=binary oddsratio;

run;
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Odds ratios for A are based on differences of least squares means for which x is set to its mean.
Odds ratios for x are computed by differencing two sets of least squares mean for the A factor.
One set is computed at x = x C 1, and the second set is computed at x = x. The following
MODEL statement changes the reference value for x to 3:

model y = A x A*x / dist=binary
oddsratio(at x=3);

DIFF< =difftype >
controls the type of differences for classification main effects. By default, odds ratios compare
the odds of a response for level j of a factor to the odds of the response for the last level of
that factor (DIFF=LAST). The DIFF=FIRST option compares the levels against the first level,
DIFF=ALL produces odds ratios based on all pairwise differences, and DIFF=NONE suppresses
odds ratios for classification main effects.

LABEL
displays a label in the “Odds Ratio Estimates” table. The table describes the comparison asso-
ciated with the table row.

UNIT var-list=value-list
specifies the units in which the effects of continuous variable in the model are assessed. By
default, odds ratios are computed for a change of one unit from the average. Consider a model
with a classification factor A with 4 levels. The following statements produce an “Odds Ratio
Estimates” table with 10 rows:

proc glimmix;
class A;
model y = A x A*x / dist=binary

oddsratio(diff=all unit x=2);
run;

The first 4 � 3=2 D 6 rows correspond to pairwise differences of levels of A. The underlying
log odds ratios are computed as differences of A least squares means. In the least squares mean
computation the covariate x is set to x. The next four rows compare least squares means for A
at x = x C 2 and at x = x. You can combine the AT and UNIT options to produce custom odds
ratios. For example, the following statements produce an “Odds Ratio Estimates” table with 8
rows:

proc glimmix;
class A;
model y = A x x*z / dist=binary

oddsratio(diff=all
at x = 3
unit x z = 2 4);

run;

The first 4 � 3=2 D 6 rows correspond to pairwise differences of levels of A. The underlying
log odds ratios are computed as differences of A least squares means. In the least squares mean
computation, the covariate x is set to 3, and the covariate x*z is set to 3z. The next odds ratio
measures the effect of a change in x. It is based on differencing the linear predictor for x = 3C 2
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and x*z = .3C 2/z with the linear predictor for x = 3 and x*z = 3z. The last odds ratio expresses
a change in z by contrasting the linear predictors based on x = 3 and x*z = 3.z C 4/ with the
predictor based on x = 3 and x*z = 3z.

To compute odds and odds ratios for general estimable functions and least squares means, see the
ODDSRATIO option in the LSMEANS statement and the EXP options in the ESTIMATE and LS-
MESTIMATE statements.

For important details concerning interpretation and computation of odds ratios with the GLIMMIX
procedure, see the section “Odds and Odds Ratio Estimation” on page 3090.

OFFSET=variable
specifies a variable to be used as an offset for the linear predictor. An offset plays the role of a fixed
effect whose coefficient is known to be 1. You can use an offset in a Poisson model, for example,
when counts have been obtained in time intervals of different lengths. With a log link function, you
can model the counts as Poisson variables with the logarithm of the time interval as the offset variable.
The offset variable cannot appear in the CLASS statement or elsewhere in the MODEL or RANDOM
statement.

REFLINP=r
specifies a value for the linear predictor of the reference level in the generalized logit model for
nominal data. By default r=0.

SOLUTION

S
requests that a solution for the fixed-effects parameters be produced. Using notation from the section
“Notation for the Generalized Linear Mixed Model” on page 2918, the fixed-effects parameter esti-
mates are b̌, and their (approximate) estimated standard errors are the square roots of the diagonal
elements of bVarŒb̌�. This matrix commonly is of the form .X0bV�1X/� in GLMMs. You can out-
put this approximate variance matrix with the COVB option. See the section “Details: GLIMMIX
Procedure” on page 3047 on the construction of bV in the various models.

Along with the estimates and their approximate standard errors, a t statistic is computed as the es-
timate divided by its standard error. The degrees of freedom for this t statistic matches the one
appearing in the “Type III Tests of Fixed Effects” table under the effect containing the parameter. If
DDFM=KENWARDROGER or DDFM=SATTERTHWAITE, the degrees of freedom are computed
separately for each fixed-effect estimate, unless you override the value for any specific effect with
the DDF=value-list option. The “Pr > |t|” column contains the two-tailed p-value corresponding to
the t statistic and associated degrees of freedom. You can use the CL option to request confidence
intervals for the fixed-effects parameters; they are constructed around the estimate by using a radius
of the standard error times a percentage point from the t distribution.

STDCOEF
reports solutions for fixed effects in terms of the standardized (scaled and/or centered) coefficients.
This option has no effect when the NOCENTER option is specified or in models for multinomial data.

ZETA=number
tunes the sensitivity in forming Type III functions. Any element in the estimable function basis with
an absolute value less than number is set to 0. The default is 1E–8.
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NLOPTIONS Statement
NLOPTIONS < options > ;

Most models fit with the GLIMMIX procedure typically have one or more nonlinear parameters. Esti-
mation requires nonlinear optimization methods. You can control the optimization through options in the
NLOPTIONS statement.

Several estimation methods of the GLIMMIX procedure (METHOD=RSPL, MSPL, RMPL, MMPL) are
doubly iterative in the following sense. The generalized linear mixed model is approximated by a linear
mixed model based on current values of the covariance parameter estimates. The resulting linear mixed
model is then fit, which is itself an iterative process (with some exceptions). On convergence, new co-
variance parameters and fixed-effects estimates are obtained and the approximated linear mixed model is
updated. Its parameters are again estimated iteratively. It is thus reasonable to refer to outer and inner iter-
ations. The outer iterations involve the repeated updates of the linear mixed models, and the inner iterations
are the iterative steps that lead to parameter estimates in any given linear mixed model. The NLOPTIONS
statement controls the inner iterations. The outer iteration behavior can be controlled with options in the
PROC GLIMMIX statement, such as the MAXLMMUPDATE=, PCONV=, and ABSPCONV= options. If
the estimation method involves a singly iterative approach, then there is no need for the outer cycling and
the model is fit in a single optimization controlled by the NLOPTIONS statement (see the section “Singly
or Doubly Iterative Fitting” on page 3104).

The syntax and options of the NLOPTIONS statement are described in the section “NLOPTIONS State-
ment” on page 482 of Chapter 19, “Shared Concepts and Topics.”

Note that in a GLMM with pseudo-likelihood estimation, specifying TECHNIQUE=NONE has the same
effect as specifying the NOITER option in the PARMS statement. If you estimate the parameters by
METHOD=LAPLACE or METHOD=QUAD, TECHNIQUE=NONE applies to the optimization after start-
ing values have been determined.

The GLIMMIX procedure applies the default optimization technique shown in Table 41.13, depending on
your model.

Table 41.13 Default Techniques

Model Family Setting TECHNIQUE=

GLM DIST=NORMAL NONE
LINK=IDENTITY

GLM otherwise NEWRAP

GLMM PARMS NOITER, PL NONE

GLMM binary data, PL NRRIDG

GLMM otherwise QUANEW
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OUTPUT Statement
OUTPUT < OUT=SAS-data-set >

< keyword< (keyword-options) > < =name > > . . .
< keyword< (keyword-options) > < =name > > < / options > ;

The OUTPUT statement creates a data set that contains predicted values and residual diagnostics, computed
after fitting the model. By default, all variables in the original data set are included in the output data set.

You can use the ID statement to select a subset of the variables from the input data set as well as computed
variables for adding to the output data set. If you reassign a data set variable through programming state-
ments, the value of the variable from the input data set supersedes the recomputed value when observations
are written to the output data set. If you list the variable in the ID statement, however, PROC GLIMMIX
saves the current value of the variable after the programming statements have been executed.

For example, suppose that data set Scores contains the variables score, machine, and person. The following
statements fit a model with fixed machine and random person effects. The variable score divided by 100 is
assumed to follow an inverse Gaussian distribution. The (conditional) mean and residuals are saved to the
data set igausout. Because no ID statement is given, the variable score in the output data set contains the
values from the input data set.

proc glimmix;
class machine person;
score = score/100;
p = 4*_linp_;
model score = machine / dist=invgauss;
random int / sub=person;
output out=igausout pred=p resid=r;

run;

On the contrary, the following statements list explicitly which variables to save to the OUTPUT data set. Be-
cause the variable score is listed in the ID statement, and is (re-)assigned through programming statements,
the values of score saved to the OUTPUT data set are the input values divided by 100.

proc glimmix;
class machine person;
score = score / 100;
model score = machine / dist=invgauss;
random int / sub=person;
output out=igausout pred=p resid=r;
id machine score _xbeta_ _zgamma_;

run;

You can specify the following syntax elements in the OUTPUT statement before the slash (/).

OUT=SAS-data-set
specifies the name of the output data set. If the OUT= option is omitted, the procedure uses the DATAn
convention to name the output data set.
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keyword< (keyword-options) > < =name >
specifies a statistic to include in the output data set and optionally assigns the variable the name
name. You can use the keyword-options to control which type of a particular statistic to compute.
The keyword-options can take on the following values:

BLUP uses the predictors of the random effects in computing the statistic.

ILINK computes the statistic on the scale of the data.

NOBLUP does not use the predictors of the random effects in computing the statistic.

NOILINK computes the statistic on the scale of the link function.

The default is to compute statistics by using BLUPs on the scale of the link function (the linearized
scale). For example, the following OUTPUT statements are equivalent:

output out=out1 pred=predicted lcl=lower;

output out=out1 pred(blup noilink)=predicted
lcl (blup noilink)=lower;

If a particular combination of keyword and keyword options is not supported, the statistic is not
computed and a message is produced in the SAS log.

A keyword can appear multiple times in the OUTPUT statement. Table 41.14 lists the keywords and
the default names assigned by the GLIMMIX procedure if you do not specify a name. In this table,
y denotes the observed response, and p denotes the linearized pseudo-data. See the section “Pseudo-
likelihood Estimation Based on Linearization” on page 3054 for details on notation and the section
“Notes on Output Statistics” on page 3111 for further details regarding the output statistics.

Table 41.14 Keywords for Output Statistics

Keyword Options Description Expression Name

PREDICTED Default Linear predictor b� D x0b̌C z0b
 Pred
NOBLUP Marginal linear predic-

tor
b�m D x0b̌ PredPA

ILINK Predicted mean g�1.b�/ PredMu
NOBLUP ILINK Marginal mean g�1.b�m/ PredMuPA

STDERR Default Standard deviation of
linear predictor

p
VarŒb� � z0
� StdErr

NOBLUP Standard deviation of
marginal linear predictor

p
VarŒb�m� StdErrPA

ILINK Standard deviation of
mean

p
VarŒg�1.b� � z0
/� StdErr

NOBLUP ILINK Standard deviation of
marginal mean

p
VarŒg�1.b�m/� StdErrMuPA

RESIDUAL Default Residual r D p �b� Resid
NOBLUP Marginal residual rm D pm �b�m ResidPA
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Table 41.14 continued

Keyword Options Description Expression Name

ILINK Residual on mean scale ry D y � g
�1.b�/ ResidMu

NOBLUP ILINK Marginal residual on
mean scale

rym D y � g
�1.b�m/ ResidMuPA

PEARSON Default Pearson-type residual r=

q
bVarŒpj
� Pearson

NOBLUP Marginal Pearson-type
residual

rm=

q
bVarŒpm� PearsonPA

ILINK Conditional Pearson-
type mean residual

ry=

q
bVarŒY j
� PearsonMu

STUDENT Default Studentized residual r=

q
bVarŒr� Student

NOBLUP Studentized marginal
residual

rm=

q
bVarŒrm� StudentPA

LCL Default Lower prediction limit
for linear predictor

LCL

NOBLUP Lower confidence limit
for marginal linear pre-
dictor

LCLPA

ILINK Lower prediction limit
for mean

LCLMu

NOBLUP ILINK Lower confidence limit
for marginal mean

LCLMuPA

UCL Default Upper prediction limit
for linear predictor

UCL

NOBLUP Upper confidence limit
for marginal linear pre-
dictor

UCLPA

ILINK Upper prediction limit
for mean

UCLMu

NOBLUP ILINK Upper confidence limit
for marginal mean

UCLMuPA

VARIANCE Default Conditional variance of
pseudo-data

bVarŒpj
� Variance

NOBLUP Marginal variance of
pseudo-data

bVarŒpm� VariancePA

ILINK Conditional variance of
response

bVarŒY j
� Variance_Dep

NOBLUP ILINK Marginal variance of re-
sponse

bVarŒY � Variance_DepPA
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Studentized residuals are computed only on the linear scale (scale of the link), unless the link is the
identity, in which case the two scales are equal. The keywords RESIDUAL, PEARSON, STUDENT,
and VARIANCE are not available with the multinomial distribution. You can use the following short-
cuts to request statistics: PRED for PREDICTED, STD for STDERR, RESID for RESIDUAL, and
VAR for VARIANCE. Output statistics that depend on the marginal variance VarŒYi � are not available
with METHOD=LAPLACE or METHOD=QUAD.

Table 41.15 summarizes the options available in the OUTPUT statement.

Table 41.15 OUTPUT Statement Options

Option Description

ALLSTATS Computes all statistics
ALPHA=˛ Determines the confidence level (1 � ˛)
CPSEUDO Changes the way in which marginal residuals are computed
DERIVATIVES Adds derivatives of model quantities to the output data set
NOMISS Outputs only observations used in the analysis
NOUNIQUE Requests that names not be made unique
NOVAR Requests that variables from the input data set not be added to the output

data set
OBSCAT Writes statistics to output data set only for the response level corresponding

to the observed level of the observation
SYMBOLS Adds computed variables to the output data set

You can specify the following options in the OUTPUT statement after a slash (/).

ALLSTATS
requests that all statistics are computed. If you do not use a keyword to assign a name, the GLIMMIX
procedure uses the default name.

ALPHA=number
determines the coverage probability for two-sided confidence and prediction intervals. The coverage
probability is computed as 1 – number. The value of number must be between 0 and 1; the default is
0.05.

CPSEUDO
changes the way in which marginal residuals are computed when model parameters are estimated by
pseudo-likelihood methods. See the section “Notes on Output Statistics” on page 3111 for details.

DERIVATIVES

DER
adds derivatives of model quantities to the output data set. If, for example, the model fit requires the
(conditional) log likelihood of the data, then the DERIVATIVES option writes for each observation
the evaluations of the first and second derivatives of the log likelihood with respect to _LINP_ and
_PHI_ to the output data set. The particular derivatives produced by the GLIMMIX procedure depend
on the type of model and the estimation method.
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NOMISS
requests that records be written to the output data only for those observations that were used in the
analysis. By default, the GLIMMIX procedure produces output statistics for all observations in the
input data set.

NOUNIQUE
requests that names not be made unique in the case of naming conflicts. By default, the GLIMMIX
procedure avoids naming conflicts by assigning a unique name to each output variable. If you specify
the NOUNIQUE option, variables with conflicting names are not renamed. In that case, the first
variable added to the output data set takes precedence.

NOVAR
requests that variables from the input data set not be added to the output data set. This option does
not apply to variables listed in the BY statement or to computed variables listed in the ID statement.

OBSCAT
requests that in models for multinomial data statistics be written to the output data set only for the
response level that corresponds to the observed level of the observation.

SYMBOLS

SYM
adds to the output data set computed variables that are defined or referenced in the program.

PARMS Statement
PARMS < (value-list) > . . . < / options > ;

The PARMS statement specifies initial values for the covariance or scale parameters, or it requests a grid
search over several values of these parameters in generalized linear mixed models.

The value-list specification can take any of several forms:

m a single value

m1; m2; : : : ; mn several values

m to n a sequence where m equals the starting value, n equals the ending value, and the incre-
ment equals 1

m to n by i a sequence where m equals the starting value, n equals the ending value, and the incre-
ment equals i

m1; m2 to m3 mixed values and sequences

Using the PARMS Statement with a GLM

If you are fitting a GLM or a GLM with overdispersion, the scale parameters are listed at the end of the
“Parameter Estimates” table in the same order as value-list. If you specify more than one set of initial
values, PROC GLIMMIX uses only the first value listed for each parameter. Grid searches by using scale
parameters are not possible for these models, because the fixed effects are part of the optimization.



PARMS Statement F 3017

Using the PARMS Statement with a GLMM

If you are fitting a GLMM, the value-list corresponds to the parameters as listed in the “Covariance Param-
eter Estimates” table. Note that this order can change depending on whether a residual variance is profiled
or not; see the NOPROFILE option in the PROC GLIMMIX statement.

If you specify more than one set of initial values, PROC GLIMMIX performs a grid search of the objective
function surface and uses the best point on the grid for subsequent analysis. Specifying a large number of
grid points can result in long computing times.

Options in the PARMS Statement

You can specify the following options in the PARMS statement after a slash (/).

HOLD=value-list
specifies which parameter values PROC GLIMMIX should hold equal to the specified values. For
example, the following statement constrains the first and third covariance parameters to equal 5 and
2, respectively:

parms (5) (3) (2) (3) / hold=1,3;

Covariance or scale parameters that are held fixed with the HOLD= option are treated as constrained
parameters in the optimization. This is different from evaluating the objective function, gradient,
and Hessian matrix at known values of the covariance parameters. A constrained parameter in-
troduces a singularity in the optimization process. The covariance matrix of the covariance pa-
rameters (see the ASYCOV option of the PROC GLIMMIX statement) is then based on the pro-
jected Hessian matrix. As a consequence, the variance of parameters subjected to a HOLD= is zero.
Such parameters do not contribute to the computation of denominator degrees of freedom with the
DDFM=KENWARDROGER and DDFM=SATTERTHWAITE methods, for example. If you want
to treat the covariance parameters as known, without imposing constraints on the optimization, you
should use the NOITER option.

When you place a hold on all parameters (or when you specify the NOITER) option in a GLMM, you
might notice that PROC GLIMMIX continues to produce an iteration history. Unless your model is a
linear mixed model, several recomputations of the pseudo-response might be required in linearization-
based methods to achieve agreement between the pseudo-data and the covariance matrix. In other
words, the GLIMMIX procedure continues to update the fixed-effects estimates (and random-effects
solutions) until convergence is achieved.

In certain models, placing a hold on covariance parameters implies that the procedure processes the
parameters in the same order as if the NOPROFILE were in effect. This can change the order of the
covariance parameters when you place a hold on one or more parameters. Models that are subject to
this reordering are those with R-side covariance structures whose scale parameter could be profiled.
This includes the TYPE=CS, TYPE=SP, TYPE=AR(1), TYPE=TOEP, and TYPE=ARMA(1,1) co-
variance structures.

LOWERB=value-list
enables you to specify lower boundary constraints for the covariance or scale parameters. The value-
list specification is a list of numbers or missing values (.) separated by commas. You must list the
numbers in the same order that PROC GLIMMIX uses for the value-list in the PARMS statement,
and each number corresponds to the lower boundary constraint. A missing value instructs PROC
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GLIMMIX to use its default constraint, and if you do not specify numbers for all of the covariance
parameters, PROC GLIMMIX assumes that the remaining ones are missing.

This option is useful, for example, when you want to constrain the G matrix to be positive definite
in order to avoid the more computationally intensive algorithms required when G becomes singular.
The corresponding statements for a random coefficients model are as follows:

proc glimmix;
class person;
model y = time;
random int time / type=chol sub=person;
parms / lowerb=1e-4,.,1e-4;

run;

Here, the TYPE=CHOL structure is used in order to specify a Cholesky root parameterization for
the 2 � 2 unstructured blocks in G. This parameterization ensures that the G matrix is nonnegative
definite, and the PARMS statement then ensures that it is positive definite by constraining the two
diagonal terms to be greater than or equal to 1E–4.

NOBOUND
requests the removal of boundary constraints on covariance and scale parameters in mixed models.
For example, variance components have a default lower boundary constraint of 0, and the NOBOUND
option allows their estimates to be negative. See the NOBOUND option in the PROC GLIMMIX
statement for further details.

NOITER
requests that no optimization of the covariance parameters be performed. This option has no effect in
generalized linear models.

If you specify the NOITER option, PROC GLIMMIX uses the values for the covariance parameters
given in the PARMS statement to perform statistical inferences. Note that the NOITER option is
not equivalent to specifying a HOLD= value for all covariance parameters. If you use the NOITER
option, covariance parameters are not constrained in the optimization. This prevents singularities that
might otherwise occur in the optimization process.

If a residual variance is profiled, the parameter estimates can change from the initial values you
provide as the residual variance is recomputed. To prevent an update of the residual variance, combine
the NOITER option with the NOPROFILE option in the PROC GLIMMIX statements, as in the
following code:

proc glimmix noprofile;
class A B C rep mp sp;
model y = A | B | C;
random rep mp sp;
parms (180) (200) (170) (1000) / noiter;

run;

When you specify the NOITER option in a model where parameters are estimated by pseudo-
likelihood techniques, you might notice that the GLIMMIX procedure continues to produce an it-
eration history. Unless your model is a linear mixed model, several recomputations of the pseudo-
response might be required in linearization-based methods to achieve agreement between the pseudo-
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data and the covariance matrix. In other words, the GLIMMIX procedure continues to update the pro-
filed fixed-effects estimates (and random-effects solutions) until convergence is achieved. To prevent
these updates, use the MAXLMMUPDATE= option in the PROC GLIMMIX statement. Specifying
the NOITER option in the PARMS statement of a GLMM with pseudo-likelihood estimation has the
same effect as choosing TECHNIQUE=NONE in the NLOPTIONS statement.

If you want to base initial fixed-effects estimates on the results of fitting a generalized linear model,
then you can combine the NOITER option with the TECHNIQUE= option. For example, the follow-
ing statements determine the starting values for the fixed effects by fitting a logistic model (without
random effects) with the Newton-Raphson algorithm:

proc glimmix startglm inititer=10;
class clinic A;
model y/n = A / link=logit dist=binomial;
random clinic;
parms (0.4) / noiter;
nloptions technique=newrap;

run;

The initial GLM fit stops at convergence or after at most 10 iterations, whichever comes first. The
pseudo-data for the linearized GLMM is computed from the GLM estimates. The variance of the
Clinic random effect is held constant at 0.4 during subsequent iterations that update the fixed effects
only.

If you also want to combine the GLM fixed-effects estimates with known and fixed covariance pa-
rameter values without updating the fixed effects, you can add the MAXLMMUPDATE=0 option:

proc glimmix startglm inititer=10 maxlmmupdate=0;
class clinic A;
model y/n = A / link=logit dist=binomial;
random clinic;
parms (0.4) / noiter;
nloptions technique=newrap;

run;

In a GLMM with parameter estimation by METHOD=LAPLACE or METHOD=QUAD the NOITER
option also leads to an iteration history, since the fixed-effects estimates are part of the optimization
and the PARMS statement places restrictions on only the covariance parameters.

Finally, the NOITER option can be useful if you want to obtain minimum variance quadratic un-
biased estimates (with 0 priors), also known as MIVQUE0 estimates (Goodnight 1978a). Because
MIVQUE0 estimates are starting values for covariance parameters—unless you provide (value-list)
in the PARMS statement—the following statements produce MIVQUE0 mixed model estimates:

proc glimmix noprofile;
class A B;
model y = A;
random int / subject=B;
parms / noiter;

run;



3020 F Chapter 41: The GLIMMIX Procedure

PARMSDATA=SAS-data-set

PDATA=SAS-data-set
reads in covariance parameter values from a SAS data set. The data set should contain the numer-
ical variable ESTIMATE or the numerical variables Covp1–Covpq, where q denotes the number of
covariance parameters.

If the PARMSDATA= data set contains multiple sets of covariance parameters, the GLIMMIX pro-
cedure evaluates the initial objective function for each set and commences the optimization step by
using the set with the lowest function value as the starting values. For example, the following SAS
statements request that the objective function be evaluated for three sets of initial values:

data data_covp;
input covp1-covp4;
datalines;
180 200 170 1000
170 190 160 900
160 180 150 800

;
proc glimmix;

class A B C rep mainEU smallEU;
model yield = A|B|C;
random rep mainEU smallEU;
parms / pdata=data_covp;

run;

Each set comprises four covariance parameters.

The order of the observations in a data set with the numerical variable Estimate corresponds to the
order of the covariance parameters in the “Covariance Parameter Estimates” table. In a GLM, the
PARMSDATA= option can be used to set the starting value for the exponential family scale parameter.
A grid search is not conducted for GLMs if you specify multiple values.

The PARMSDATA= data set must not contain missing values.

If the GLIMMIX procedure is processing the input data set in BY groups, you can add the BY vari-
ables to the PARMSDATA= data set. If this data set is sorted by the BY variables, the GLIMMIX
procedure matches the covariance parameter values to the current BY group. If the PARMSDATA=
data set does not contain all BY variables, the data set is processed in its entirety for every BY group
and a message is written to the log. This enables you to provide a single set of starting values across
BY groups, as in the following statements:

data data_covp;
input covp1-covp4;
datalines;
180 200 170 1000

;
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proc glimmix;
class A B C rep mainEU smallEU;
model yield = A|B|C;
random rep mainEU smallEU;
parms / pdata=data_covp;
by year;

run;

The same set of starting values is used for each value of the year variable.

UPPERB=value-list
enables you to specify upper boundary constraints on the covariance parameters. The value-list spec-
ification is a list of numbers or missing values (.) separated by commas. You must list the numbers
in the same order that PROC GLIMMIX uses for the value-list in the PARMS statement, and each
number corresponds to the upper boundary constraint. A missing value instructs PROC GLIMMIX to
use its default constraint. If you do not specify numbers for all of the covariance parameters, PROC
GLIMMIX assumes that the remaining ones are missing.

RANDOM Statement
RANDOM random-effects < / options > ;

Using notation from “Notation for the Generalized Linear Mixed Model” on page 2918, the RANDOM
statement defines the Z matrix of the mixed model, the random effects in the 
 vector, the structure of G,
and the structure of R.

The Z matrix is constructed exactly like the X matrix for the fixed effects, and the G matrix is constructed
to correspond to the effects constituting Z. The structures of G and R are defined by using the TYPE=
option described on page 3028. The random effects can be classification or continuous effects, and multiple
RANDOM statements are possible.

Some reserved keywords have special significance in the random-effects list. You can specify INTERCEPT
(or INT) as a random effect to indicate the intercept. PROC GLIMMIX does not include the intercept in the
RANDOM statement by default as it does in the MODEL statement. You can specify the _RESIDUAL_
keyword (or RESID, RESIDUAL, _RESID_) before the option slash (/) to indicate a residual-type (R-side)
random component that defines the R matrix. Basically, the _RESIDUAL_ keyword takes the place of
the random-effect if you want to specify R-side variances and covariance structures. These keywords take
precedence over variables in the data set with the same name. If your data or the covariance structure
requires that an effect is specified, you can use the RESIDUAL option to instruct the GLIMMIX procedure
to model the R-side variances and covariances.

In order to add an overdispersion component to the variance function, simply specify a single residual
random component. For example, the following statements fit a polynomial Poisson regression model with
overdispersion. The variance function a.�/ D � is replaced by �a.�/:

proc glimmix;
model count = x x*x / dist=poisson;
random _residual_;

run;
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Table 41.16 summarizes the options available in the RANDOM statement. All options are subsequently
discussed in alphabetical order.

Table 41.16 RANDOM Statement Options

Option Description

Construction of Covariance Structure
GCOORD= Determines coordinate association for G-side spatial structures with repeat

levels
GROUP= Varies covariance parameters by groups
LDATA= Specifies a data set with coefficient matrices for TYPE= LIN
NOFULLZ Eliminates columns in Z corresponding to missing values
RESIDUAL Designates a covariance structure as R-side
SUBJECT= Identifies the subjects in the model
TYPE= Specifies the covariance structure

Mixed Model Smoothing
KNOTINFO Displays spline knots
KNOTMAX= Specifies the upper limit for knot construction
KNOTMETHOD Specifies the method for constructing knots for radial smoother and penal-

ized B-splines
KNOTMIN= Specifies the lower limit for knot construction

Statistical Output
ALPHA=˛ Determines the confidence level (1 � ˛)
CL Requests confidence limits for predictors of random effects
G Displays the estimated G matrix
GC Displays the Cholesky root (lower) of the estimated G matrix
GCI Displays the inverse Cholesky root (lower) of the estimated G matrix
GCORR Displays the correlation matrix that corresponds to the estimated G matrix
GI Displays the inverse of the estimated G matrix
SOLUTION Displays solutionsb
 of the G-side random effects
V Displays blocks of the estimated V matrix
VC Displays the lower-triangular Cholesky root of blocks of the estimated V

matrix
VCI Displays the inverse Cholesky root of blocks of the estimated V matrix
VCORR Displays the correlation matrix corresponding to blocks of the estimated V

matrix
VI Displays the inverse of the blocks of the estimated V matrix

You can specify the following options in the RANDOM statement after a slash (/).

ALPHA=number
requests that a t-type confidence interval with confidence level 1 – number be constructed for the
predictors of G-side random effects in this statement. The value of number must be between 0 and 1;
the default is 0.05. Specifying the ALPHA= option implies the CL option.
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CL
requests that t-type confidence limits be constructed for each of the predictors of G-side random ef-
fects in this statement. The confidence level is 0.95 by default; this can be changed with the ALPHA=
option. The CL option implies the SOLUTION option.

G
requests that the estimated G matrix be displayed for G-side random effects associated with this
RANDOM statement. PROC GLIMMIX displays blanks for values that are 0.

GC
displays the lower-triangular Cholesky root of the estimated G matrix for G-side random effects.

GCI
displays the inverse Cholesky root of the estimated G matrix for G-side random effects.

GCOORD=LAST

GCOORD=FIRST

GCOORD=MEAN
determines how the GLIMMIX procedure associates coordinates for TYPE=SP() covariance struc-
tures with effect levels for G-side random effects. In these covariance structures, you specify one
or more variables that identify the coordinates of a data point. The levels of classification variables,
on the other hand, can occur multiple times for a particular subject. For example, in the following
statements the same level of A can occur multiple times, and the associated values of x might be
different:

proc glimmix;
class A B;
model y = B;
random A / type=sp(pow)(x);

run;

The GCOORD=LAST option determines the coordinates for a level of the random effect from the
last observation associated with the level. Similarly, the GCOORD=FIRST and GCOORD=MEAN
options determine the coordinate from the first observation and from the average of the observations.
Observations not used in the analysis are not considered in determining the first, last, or average
coordinate. The default is GCOORD=LAST.

GCORR
displays the correlation matrix that corresponds to the estimated G matrix for G-side random effects.

GI
displays the inverse of the estimated G matrix for G-side random effects.

GROUP=effect

GRP=effect
identifies groups by which to vary the covariance parameters. Each new level of the grouping effect
produces a new set of covariance parameters. Continuous variables and computed variables are per-
mitted as group effects. PROC GLIMMIX does not sort by the values of the continuous variable;
rather, it considers the data to be from a new group whenever the value of the continuous variable
changes from the previous observation. Using a continuous variable decreases execution time for
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models with a large number of groups and also prevents the production of a large “Class Levels
Information” table.

Specifying a GROUP effect can greatly increase the number of estimated covariance parameters,
which can adversely affect the optimization process.

KNOTINFO
displays the number and coordinates of the knots as determined by the KNOTMETHOD= option.

KNOTMAX=number-list
provides upper limits for the values of random effects used in the construction of knots for
TYPE=RSMOOTH. The items in number-list correspond to the random effects of the radial smooth.
If the KNOTMAX= option is not specified, or if the value associated with a particular ran-
dom effect is set to missing, the maximum is based on the values in the data set for KNOT-
METHOD=EQUAL or KNOTMETHOD=KDTREE, and is based on the values in the knot data set
for KNOTMETHOD=DATA.

KNOTMETHOD=KDTREE< (tree-options) >

KNOTMETHOD=EQUAL< (number-list) >

KNOTMETHOD=DATA(SAS-data-set)
determines the method of constructing knots for the radial smoother fit with the TYPE=RSMOOTH
covariance structure and the TYPE=PSPLINE covariance structure.

Unless you select the TYPE=RSMOOTH or TYPE=PSPLINE covariance structure, the KNOT-
METHOD= option has no effect. The default for TYPE=RSMOOTH is KNOTMETHOD=KDTREE.
For TYPE=PSPLINE, only equally spaced knots are used and you can use the optional numberlist ar-
gument of KNOTMETHOD=EQUAL to determine the number of interior knots for TYPE=PSPLINE.

Knot Construction for TYPE=RSMOOTH

PROC GLIMMIX fits a low-rank smoother, meaning that the number of knots is considerably less
than the number of observations. By default, PROC GLIMMIX determines the knot locations based
on the vertices of a k-d tree (Friedman, Bentley, and Finkel 1977; Cleveland and Grosse 1991). The
k-d tree is a tree data structure that is useful for efficiently determining the m nearest neighbors of a
point. The k-d tree also can be used to obtain a grid of points that adapts to the configuration of the
data. The process starts with a hypercube that encloses the values of the random effects. The space
is then partitioned recursively by splitting cells at the median of the data in the cell for the random
effect. The procedure is repeated for all cells that contain more than a specified number of points, b.
The value b is called the bucket size.

The k-d tree is thus a division of the data into cells such that cells representing leaf nodes contain
at most b values. You control the building of the k-d tree through the BUCKET= tree-option. You
control the construction of knots from the cell coordinates of the tree with the other options as follows.

BUCKET=number
determines the bucket size b. A larger bucket size will result in fewer knots. For k-d trees in more
than one dimension, the correspondence between bucket size and number of knots is difficult
to determine. It depends on the data configuration and on other suboptions. In the multivariate
case, you might need to try out different bucket sizes to obtain the desired number of knots.
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The default value of number is 4 for univariate trees (a single random effect) and b0:1nc in the
multidimensional case.

KNOTTYPE=type
specifies whether the knots are based on vertices of the tree cells or the centroid. The two
possible values of type are VERTEX and CENTER. The default is KNOTTYPE=VERTEX.
For multidimensional smoothing, such as smoothing across irregularly shaped spatial domains,
the KNOTTYPE=CENTER option is useful to move knot locations away from the bounding
hypercube toward the convex hull.

NEAREST
specifies that knot coordinates are the coordinates of the nearest neighbor of either the centroid
or vertex of the cell, as determined by the KNOTTYPE= suboption.

TREEINFO
displays details about the construction of the k-d tree, such as the cell splits and the split values.

See the section “Knot Selection” on page 3085 for a detailed example of how the specification of the
bucket size translates into the construction of a k-d tree and the spline knots.

The KNOTMETHOD=EQUAL option enables you to define a regular grid of knots. By default,
PROC GLIMMIX constructs 10 knots for one-dimensional smooths and 5 knots in each dimension
for smoothing in higher dimensions. You can specify a different number of knots with the optional
number-list. Missing values in the number-list are replaced with the default values. A minimum of
two knots in each dimension is required. For example, the following statements use a rectangular grid
of 35 knots, five knots for x1 combined with seven knots for x2:

proc glimmix;
model y=;
random x1 x2 / type=rsmooth knotmethod=equal(5 7);

run;

When you use the NOFIT option in the PROC GLIMMIX statement, the GLIMMIX procedure com-
putes the knots but does not fit the model. This can be useful if you want to compare knot selections
with different suboptions of KNOTMETHOD=KDTREE. Suppose you want to determine the number
of knots based on a particular bucket size. The following statements compute and display the knots
in a bivariate smooth, constructed from nearest neighbors of the vertices of a k-d tree with bucket size
10:

proc glimmix nofit;
model y = Latitude Longitude;
random Latitude Longitude / type=rsmooth

knotmethod=kdtree(knottype=vertex
nearest bucket=10) knotinfo;

run;

You can specify a data set that contains variables whose values give the knot coordinates with the
KNOTMETHOD=DATA option. The data set must contain numeric variables with the same name
as the radial smoothing random-effects. PROC GLIMMIX uses only the unique knot coordinates in
the knot data set. This option is useful to provide knot coordinates different from those that can be
produced from a k-d tree. For example, in spatial problems where the domain is irregularly shaped,
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you might want to determine knots by a space-filling algorithm. The following SAS statements invoke
the OPTEX procedure to compute 45 knots that uniformly cover the convex hull of the data locations
(see SAS/QC User’s Guide for details about the OPTEX procedure).

proc optex coding=none;
model latitude longitude / noint;
generate n=45 criterion=u method=m_fedorov;
output out=knotdata;

run;
proc glimmix;

model y = Latitude Longitude;
random Latitude Longitude / type=rsmooth

knotmethod=data(knotdata);
run;

Knot Construction for TYPE=PSPLINE

Only evenly spaced knots are supported when you fit penalized B-splines with the GLIMMIX proce-
dure. For the TYPE=PSPLINE covariance structure, the numberlist argument specifies the number m
of interior knots, the default is m D 10. Suppose that x.1/ and x.n/ denote the smallest and largest
values, respectively. For a B-spline of degree d (de Boor 2001), the interior knots are supplemented
with d exterior knots below x.1/ and maxf1; dg exterior knots above x.n/. PROC GLIMMIX com-
putes the location of these m C d C maxf1; dg knots as follows. Let ıx D .x.n/ � x.1//=.m C 1/,
then interior knots are placed at

x.1/ C jıx; j D 1; � � � ; m

The exterior knots are also evenly spaced with step size ıx and start at x.1/ ˙ 100 times the machine
epsilon. At least one interior knot is required.

KNOTMIN=number-list
provides lower limits for the values of random effects used in the construction of knots for
TYPE=RSMOOTH. The items in number-list correspond to the random effects of the radial
smooth. If the KNOTMIN= option is not specified, or if the value associated with a particular
random effect is set to missing, the minimum is based on the values in the data set for KNOT-
METHOD=EQUAL or KNOTMETHOD=KDTREE, and is based on the values in the knot data set
for KNOTMETHOD=DATA.

LDATA=SAS-data-set
reads the coefficient matrices A1; � � � ;Aq for the TYPE=LIN(q) option. You can specify the LDATA=
data set in a sparse or dense form. In the sparse form the data set must contain the numeric variables
Parm, Row, Col, and Value. The Parm variable contains the indices i D 1; � � � ; q of the Ai matrices.
The Row and Col variables identify the position within a matrix and the Value variable contains the
matrix element. Values not specified for a particular row and column are set to zero. Missing values
are allowed in the Value column of the LDATA= data set; these values are also replaced by zeros. The
sparse form is particularly useful if the A matrices have only a few nonzero elements.

In the dense form the LDATA= data set contains the numeric variables Parm and Row (with the same
function as above), in addition to the numeric variables Col1–Colq. If you omit one or more of the
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Col1–Colq variables from the data set, zeros are assumed for the respective rows and columns of the
A matrix. Missing values for Col1–Colq are ignored in the dense form.

The GLIMMIX procedure assumes that the matrices A1; � � � ;Aq are symmetric. In the sparse
LDATA= form you do not need to specify off-diagonal elements in position .i; j / and .j; i/. One
of them is sufficient. Row-column indices are converted in both storage forms into positions in lower
triangular storage. If you specify multiple values in row .maxfi; j g and column minfi; j g/ of a par-
ticular matrix, only the last value is used. For example, assume you are specifying elements of a 4�4
matrix. The lower triangular storage of matrix A3 defined by

data ldata;
input parm row col value;
datalines;

3 2 1 2
3 1 2 5
;

is 2664
0

5 0

0 0 0

0 0 0 0

3775
NOFULLZ

eliminates the columns in Z corresponding to missing levels of random effects involving CLASS
variables. By default, these columns are included in Z. It is sufficient to specify the NOFULLZ
option on any G-side RANDOM statement.

RESIDUAL
RSIDE

specifies that the random effects listed in this statement be R-side effects. You use the RESIDUAL
option in the RANDOM statement if the nature of the covariance structure requires you to specify an
effect. For example, if it is necessary to order the columns of the R-side AR(1) covariance structure
by the time variable, you can use the RESIDUAL option as in the following statements:

class time id;
random time / subject=id type=ar(1) residual;

SOLUTION
S

requests that the solution b
 for the random-effects parameters be produced, if the statement defines
G-side random effects.

The numbers displayed in the Std Err Pred column of the “Solution for Random Effects” table are
not the standard errors of the b
 displayed in the Estimate column; rather, they are the square roots
of the prediction errors b
 i � 
i , where b
 i is the predictor of the ith random effect and 
i is the ith
random effect. In pseudo-likelihood methods that are based on linearization, these EBLUPs are the
estimated best linear unbiased predictors in the linear mixed pseudo-model. In models fit by maximum
likelihood by using the Laplace approximation or by using adaptive quadrature, the SOLUTION
option displays the empirical Bayes estimates (EBE) of 
i .
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SUBJECT=effect
SUB=effect

identifies the subjects in your generalized linear mixed model. Complete independence is assumed
across subjects. Specifying a subject effect is equivalent to nesting all other effects in the RANDOM
statement within the subject effect.

Continuous variables and computed variables are permitted with the SUBJECT= option. PROC
GLIMMIX does not sort by the values of the continuous variable but considers the data to be from
a new subject whenever the value of the continuous variable changes from the previous observation.
Using a continuous variable can decrease execution time for models with a large number of subjects
and also prevents the production of a large “Class Levels Information” table.

TYPE=covariance-structure
specifies the covariance structure of G for G-side effects and the covariance structure of R for R-side
effects.

Although a variety of structures are available, many applications call for either simple diagonal
(TYPE=VC) or unstructured covariance matrices. The TYPE=VC (variance components) option is
the default structure, and it models a different variance component for each random effect. It is rec-
ommended to model unstructured covariance matrices in terms of their Cholesky parameterization
(TYPE=CHOL) rather than TYPE=UN.

If you want different covariance structures in different parts of G, you must use multiple RANDOM
statements with different TYPE= options.

Valid values for covariance-structure are as follows. Examples are shown in Table 41.18.

The variances and covariances in the formulas that follow in the TYPE= descriptions are expressed in
terms of generic random variables �i and �j . They represent the G-side random effects or the residual
random variables for which the G or R matrices are constructed.

ANTE(1)
specifies a first-order ante-dependence structure (Kenward 1987; Patel 1991) parameterized in
terms of variances and correlation parameters. If t ordered random variables �1; � � � ; �t have a
first-order ante-dependence structure, then each �j , j > 1, is independent of all other �k; k < j ,
given �j�1. This Markovian structure is characterized by its inverse variance matrix, which
is tridiagonal. Parameterizing an ANTE(1) structure for a random vector of size t requires
2t – 1 parameters: variances �21 ; � � � ; �

2
t and t – 1 correlation parameters �1; � � � ; �t�1. The

covariances among random variables �i and �j are then constructed as

Cov
�
�i ; �j

�
D

q
�2i �

2
j

j�1Y
kDi

�k

PROC GLIMMIX constrains the correlation parameters to satisfy j�kj < 1; 8k. For variable-
order ante-dependence models see Macchiavelli and Arnold (1994).

AR(1)
specifies a first-order autoregressive structure,

Cov
�
�i ; �j

�
D �2�ji

��j�j

The values i� and j � are derived for the ith and jth observations, respectively, and are not neces-
sarily the observation numbers. For example, in the following statements the values correspond
to the class levels for the time effect of the ith and jth observation within a particular subject:
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proc glimmix;
class time patient;
model y = x x*x;
random time / sub=patient type=ar(1);

run;

PROC GLIMMIX imposes the constraint j�j < 1 for stationarity.

ARH(1)
specifies a heterogeneous first-order autoregressive structure,

Cov
�
�i ; �j

�
D

q
�2i �

2
j �
ji��j�j

with j�j < 1. This covariance structure has the same correlation pattern as the TYPE=AR(1)
structure, but the variances are allowed to differ.

ARMA(1,1)
specifies the first-order autoregressive moving-average structure,

Cov
�
�i ; �j

�
D

�
�2 i D j

�2
�ji
��j�j�1 i 6D j

Here, � is the autoregressive parameter, 
 models a moving-average component, and �2 is a
scale parameter. In the notation of Fuller (1976, p. 68), � D �1 and


 D
.1C b1�1/.�1 C b1/

1C b21 C 2b1�1

The example in Table 41.18 and jb1j < 1 imply that

b1 D
ˇ �

p
ˇ2 � 4˛2

2˛

where ˛ D 
 � � and ˇ D 1C �2 � 2
�. PROC GLIMMIX imposes the constraints j�j < 1

and j
 j < 1 for stationarity, although for some values of � and 
 in this region the resulting
covariance matrix is not positive definite. When the estimated value of � becomes negative, the
computed covariance is multiplied by cos.�dij / to account for the negativity.

CHOL< (q) >
specifies an unstructured variance-covariance matrix parameterized through its Cholesky root.
This parameterization ensures that the resulting variance-covariance matrix is at least positive
semidefinite. If all diagonal values are nonzero, it is positive definite. For example, a 2 � 2
unstructured covariance matrix can be written as

VarŒ�� D
�
�1 �12
�12 �2

�

Without imposing constraints on the three parameters, there is no guarantee that the estimated
variance matrix is positive definite. Even if �1 and �2 are nonzero, a large value for �12 can lead
to a negative eigenvalue of VarŒ��. The Cholesky root of a positive definite matrix A is a lower
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triangular matrix C such that CC0 D A. The Cholesky root of the above 2 � 2 matrix can be
written as

C D
�
˛1 0

˛12 ˛2

�
The elements of the unstructured variance matrix are then simply �1 D ˛21 , �12 D ˛1˛12, and
�2 D ˛212 C ˛

2
2 . Similar operations yield the generalization to covariance matrices of higher

orders.

For example, the following statements model the covariance matrix of each subject as an un-
structured matrix:

proc glimmix;
class sub;
model y = x;
random _residual_ / subject=sub type=un;

run;

The next set of statements accomplishes the same, but the estimated R matrix is guaranteed to
be nonnegative definite:

proc glimmix;
class sub;
model y = x;
random _residual_ / subject=sub type=chol;

run;

The GLIMMIX procedure constrains the diagonal elements of the Cholesky root to be positive.
This guarantees a unique solution when the matrix is positive definite.

The optional order parameter q > 0 determines how many bands below the diagonal are mod-
eled. Elements in the lower triangular portion of C in bands higher than q are set to zero. If you
consider the resulting covariance matrix A D CC0, then the order parameter has the effect of
zeroing all off-diagonal elements that are at least q positions away from the diagonal.

Because of its good computational and statistical properties, the Cholesky root parameteriza-
tion is generally recommended over a completely unstructured covariance matrix (TYPE=UN).
However, it is computationally slightly more involved.

CS
specifies the compound-symmetry structure, which has constant variance and constant covari-
ance

Cov
�
�i ; �j

�
D

�
� C � i D j

� i 6D j

The compound symmetry structure arises naturally with nested random effects, such as when
subsampling error is nested within experimental error. The models constructed with the follow-
ing two sets of GLIMMIX statements have the same marginal variance matrix, provided � is
positive:
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proc glimmix;
class block A;
model y = block A;
random block*A / type=vc;

run;

proc glimmix;
class block A;
model y = block A;
random _residual_ / subject=block*A

type=cs;
run;

In the first case, the block*A random effect models the G-side experimental error. Because the
distribution defaults to the normal, the R matrix is of form �I (see Table 41.19), and � is the
subsampling error variance. The marginal variance for the data from a particular experimental
unit is thus �2

b�a
JC �I. This matrix is of compound symmetric form.

Hierarchical random assignments or selections, such as subsampling or split-plot designs, give
rise to compound symmetric covariance structures. This implies exchangeability of the obser-
vations on the subunit, leading to constant correlations between the observations. Compound
symmetric structures are thus usually not appropriate for processes where correlations decline
according to some metric, such as spatial and temporal processes.

Note that R-side compound-symmetry structures do not impose any constraint on � . You can
thus use an R-side TYPE=CS structure to emulate a variance-component model with unbounded
estimate of the variance component.

CSH
specifies the heterogeneous compound-symmetry structure, which is an equi-correlation struc-
ture but allows for different variances

Cov
�
�i ; �j

�
D

8<:
q
�2i �

2
j i D j

�
q
�2i �

2
j i 6D j

FA(q)
specifies the factor-analytic structure with q factors (Jennrich and Schluchter 1986). This struc-
ture is of the form ƒƒ0 C D, where ƒ is a t � q rectangular matrix and D is a t � t diagonal
matrix with t different parameters. When q > 1, the elements ofƒ in its upper-right corner (that
is, the elements in the ith row and jth column for j > i ) are set to zero to fix the rotation of the
structure.

FA0(q)
specifies a factor-analytic structure with q factors of the form VarŒ�� D ƒƒ0, where ƒ is a
t � q rectangular matrix and t is the dimension of Y. When q > 1, ƒ is a lower triangular
matrix. When q < t—that is, when the number of factors is less than the dimension of the
matrix—this structure is nonnegative definite but not of full rank. In this situation, you can use
it to approximate an unstructured covariance matrix.
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HF
specifies a covariance structure that satisfies the general Huynh-Feldt condition (Huynh and
Feldt 1970). For a random vector with t elements, this structure has t C 1 positive parameters
and covariances

Cov
�
�i ; �j

�
D

�
�2i i D j

0:5.�2i C �
2
j / � � i 6D j

A covariance matrix † generally satisfies the Huynh-Feldt condition if it can be written as
† D �10C1�0C�I. The preceding parameterization chooses �i D 0:5.�2i ��/. Several simpler
covariance structures give rise to covariance matrices that also satisfy the Huynh-Feldt condition.
For example, TYPE=CS, TYPE=VC, and TYPE=UN(1) are nested within TYPE=HF. You can
use the COVTEST statement to test the HF structure against one of these simpler structures.
Note also that the HF structure is nested within an unstructured covariance matrix.

The TYPE=HF covariance structure can be sensitive to the choice of starting values and the
default MIVQUE(0) starting values can be poor for this structure; you can supply your own
starting values with the PARMS statement.

LIN(q)
specifies a general linear covariance structure with q parameters. This structure consists of a
linear combination of known matrices that you input with the LDATA= option. Suppose that
you want to model the covariance of a random vector of length t, and further suppose that
A1; � � � ;Aq are symmetric .t � t ) matrices constructed from the information in the LDATA=
data set. Then,

Cov
�
�i ; �j

�
D

qX
kD1

�kŒAk�ij

where ŒAk�ij denotes the element in row i, column j of matrix Ak .

Linear structures are very flexible and general. You need to exercise caution to ensure that
the variance matrix is positive definite. Note that PROC GLIMMIX does not impose boundary
constraints on the parameters �1; � � � ; �k of a general linear covariance structure. For example, if
classification variable A has 6 levels, the following statements fit a variance component structure
for the random effect without boundary constraints:

data ldata;
retain parm 1 value 1;
do row=1 to 6; col=row; output; end;

run;

proc glimmix data=MyData;
class A B;
model Y = B;
random A / type=lin(1) ldata=ldata;

run;
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PSPLINE< (options) >
requests that PROC GLIMMIX form a B-spline basis and fits a penalized B-spline (P-spline,
Eilers and Marx 1996) with random spline coefficients. This covariance structure is available
only for G-side random effects and only a single continuous random effect can be specified with
TYPE=PSPLINE. As for TYPE=RSMOOTH, PROC GLIMMIX forms a modified Z matrix
and fits a mixed model in which the random variables associated with the columns of Z are
independent with a common variance. The Z matrix is constructed as follows.

Denote as eZ the .n � K/ matrix of B-splines of degree d and denote as Dr the .K � r � K/
matrix of rth-order differences. For example, for K = 5,

D1 D

2664
1 �1 0 0 0

0 1 �1 0 0

0 0 1 �1 0

0 0 0 1 �1

3775
D2 D

24 1 �2 1 0 0

0 1 �2 1 0

0 0 1 �2 1

35
D3 D

�
1 �3 3 �1 0

0 1 �3 3 �1

�

Then, the Z matrix used in fitting the mixed model is the .n �K � r/ matrix

Z DeZ.D0rDr/�D0r

The construction of the B-spline knots is controlled with the KNOTMETHOD= EQUAL(m)
option and the DEGREE=d suboption of TYPE=PSPLINE. The total number of knots equals
the number m of equally spaced interior knots plus d knots at the low end and maxf1; dg knots at
the high end. The number of columns in the B-spline basis equals K = m + d + 1. By default, the
interior knots exclude the minimum and maximum of the random-effect values and are based on
m – 1 equally spaced intervals. Suppose x.1/ and x.n/ are the smallest and largest random-effect
values; then interior knots are placed at

x.1/ C j.x.n/ � x.1//=.mC 1/; j D 1; � � � ; m

In addition, d evenly spaced exterior knots are placed below x.1/ and maxfd; 1g exterior knots
are placed above x.m/. The exterior knots are evenly spaced and start at x.1/ ˙ 100 times the
machine epsilon. For example, based on the defaults d = 3, r = 3, the following statements lead
to 26 total knots and 21 columns in Z, m = 20, K = m + d + 1 = 24, K – r = 21:

proc glimmix;
model y = x;
random x / type=pspline knotmethod=equal(20);

run;

Details about the computation and properties of B-splines can be found in de Boor (2001).
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You can extend or limit the range of the knots with the KNOTMIN= and KNOTMAX= options.
Table 41.17 lists some of the parameters that control this covariance type and their relationships.

Table 41.17 P-Spline Parameters

Parameter Description

d Degree of B-spline, default d = 3
r Order of differencing in construction of Dr , default r = 3
m Number of interior knots, default m D 10
mC d Cmaxf1; dg Total number of knots
K D mC d C 1 Number of columns in B-spline basis
K � r Number of columns in Z

You can specify the following options for TYPE=PSPLINE:

DEGREE=d specifies the degree of the B-spline. The default is d = 3.

DIFFORDER=r specifies the order of the differencing matrix Dr . The default and maximum
is r = 3.

RSMOOTH< (m | NOLOG) >
specifies a radial smoother covariance structure for G-side random effects. This results in an
approximate low-rank thin-plate spline where the smoothing parameter is obtained by the esti-
mation method selected with the METHOD= option of the PROC GLIMMIX statement. The
smoother is based on the automatic smoother in Ruppert, Wand, and Carroll (2003, Chapter
13.4–13.5), but with a different method of selecting the spline knots. See the section “Radial
Smoothing Based on Mixed Models” on page 3084 for further details about the construction of
the smoother and the knot selection.

Radial smoothing is possible in one or more dimensions. A univariate smoother is obtained
with a single random effect, while multiple random effects in a RANDOM statement yield
a multivariate smoother. Only continuous random effects are permitted with this covariance
structure. If nr denotes the number of continuous random effects in the RANDOM statement,
then the covariance structure of the random effects 
 is determined as follows. Suppose that zi
denotes the vector of random effects for the ith observation. Let �k denote the .nr � 1/ vector
of knot coordinates, k D 1; � � � ; K, and K is the total number of knots. The Euclidean distance
between the knots is computed as

dkp D jj�k � �pjj D

vuut nrX
jD1

.�jk � �jp/
2

and the distance between knots and effects is computed as

hik D jjzi � �kjj D

vuut nrX
jD1

.zij � �jk/
2

The Z matrix for the GLMM is constructed as

Z D eZ��1=2
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where the .n �K/ matrixeZ has typical element

ŒeZ�ik D � h
p

ik
nr odd

h
p

ik
logfhikg nr even

and the .K �K/ matrix� has typical element

Œ��kp D

(
d
p

kp
nr odd

d
p

kp
logfdkpg nr even

The exponent in these expressions equals p D 2m�nr , where the optional value m corresponds
to the derivative penalized in the thin-plate spline. A larger value of m will yield a smoother
fit. The GLIMMIX procedure requires p > 0 and chooses by default m = 2 if nr < 3 and
m D nr=2C 1 otherwise. The NOLOG option removes the logfhikg and logfdkpg terms from
the computation of theeZ and�matrices when nr is even; this yields invariance under rescaling
of the coordinates.

Finally, the components of 
 are assumed to have equal variance �2r . The “smoothing parame-
ter” � of the low-rank spline is related to the variance components in the model, �2 D f .�; �2r /.
See Ruppert, Wand, and Carroll (2003) for details. If the conditional distribution does not pro-
vide a scale parameter �, you can add a single R-side residual parameter.

The knot selection is controlled with the KNOTMETHOD= option. The GLIMMIX procedure
selects knots automatically based on the vertices of a k-d tree or reads knots from a data set
that you supply. See the section “Radial Smoothing Based on Mixed Models” on page 3084 for
further details on radial smoothing in the GLIMMIX procedure and its connection to a mixed
model formulation.

SIMPLE
is an alias for TYPE=VC.

SP(EXP)(c-list)
models an exponential spatial or temporal covariance structure, where the covariance between
two observations depends on a distance metric dij . The c-list contains the names of the numeric
variables used as coordinates to determine distance. For a stochastic process in Rk , there are k
elements in c-list. If the .k � 1/ vectors of coordinates for observations i and j are ci and cj ,
then PROC GLIMMIX computes the Euclidean distance

dij D jjci � cj jj D

vuut kX
mD1

.cmi � cmj /2

The covariance between two observations is then

Cov
�
�i ; �j

�
D �2 expf�dij =˛g

The parameter ˛ is not what is commonly referred to as the range parameter in geostatistical
applications. The practical range of a (second-order stationary) spatial process is the distance
d .p/ at which the correlations fall below 0.05. For the SP(EXP) structure, this distance is d .p/ D
3˛. PROC GLIMMIX constrains ˛ to be positive.
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SP(GAU)(c-list)
models a Gaussian covariance structure,

Cov
�
�i ; �j

�
D �2 expf�d2ij =˛

2
g

See TYPE=SP(EXP) for the computation of the distance dij . The parameter ˛ is related to the
range of the process as follows. If the practical range d .p/ is defined as the distance at which the
correlations fall below 0.05, then d .p/ D

p
3˛. PROC GLIMMIX constrains ˛ to be positive.

See TYPE=SP(EXP) for the computation of the distance dij from the variables specified in
c-list.

SP(MAT)(c-list)
models a covariance structure in the Matérn class of covariance functions (Matérn 1986). The
covariance is expressed in the parameterization of Handcock and Stein (1993); Handcock and
Wallis (1994); it can be written as

Cov
�
�i ; �j

�
D �2

1

�.�/

�
dij
p
�

�

��
2K�

�
2dij
p
�

�

�
The function K� is the modified Bessel function of the second kind of (real) order � > 0. The
smoothness (continuity) of a stochastic process with covariance function in the Matérn class in-
creases with �. This class thus enables data-driven estimation of the smoothness properties of the
process. The covariance is identical to the exponential model for � D 0:5 (TYPE=SP(EXP)(c-
list)), while for � D 1 the model advocated by Whittle (1954) results. As � ! 1, the model
approaches the Gaussian covariance structure (TYPE=SP(GAU)(c-list)).

Note that the MIXED procedure offers covariance structures in the Matérn class in two pa-
rameterizations, TYPE=SP(MATERN) and TYPE=SP(MATHSW). The TYPE=SP(MAT) in the
GLIMMIX procedure is equivalent to TYPE=SP(MATHSW) in the MIXED procedure.

Computation of the function K� and its derivatives is numerically demanding; fitting models
with Matérn covariance structures can be time-consuming. Good starting values are essential.

SP(POW)(c-list)
models a power covariance structure,

Cov
�
�i ; �j

�
D �2�dij

where � � 0. This is a reparameterization of the exponential structure, TYPE=SP(EXP). Specif-
ically, logf�g D �1=˛. See TYPE=SP(EXP) for the computation of the distance dij from the
variables specified in c-list. When the estimated value of � becomes negative, the computed
covariance is multiplied by cos.�dij / to account for the negativity.

SP(POWA)(c-list)
models an anisotropic power covariance structure in k dimensions, provided that the coordinate
list c-list has k elements. If cim denotes the coordinate for the ith observation of the mth variable
in c-list, the covariance between two observations is given by

Cov
�
�i ; �j

�
D �2�

jci1�cj1j

1 �
jci2�cj2j

2 : : : �
jcik�cjk j

k

Note that for k = 1, TYPE=SP(POWA) is equivalent to TYPE=SP(POW), which is itself a repa-
rameterization of TYPE=SP(EXP). When the estimated value of �m becomes negative, the com-
puted covariance is multiplied by cos.�jcim � cjmj/ to account for the negativity.
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SP(SPH)(c-list)
models a spherical covariance structure,

Cov
�
�i ; �j

�
D

8<: �2
�
1 �

3dij
2˛
C

1
2

�
dij
˛

�3�
dij � ˛

0 dij > ˛

The spherical covariance structure has a true range parameter. The covariances between observa-
tions are exactly zero when their distance exceeds ˛. See TYPE=SP(EXP) for the computation
of the distance dij from the variables specified in c-list.

TOEP
models a Toeplitz covariance structure. This structure can be viewed as an autoregressive struc-
ture with order equal to the dimension of the matrix,

Cov
�
�i ; �j

�
D

�
�2 i D j

�ji�j j i 6D j

TOEP(q)
specifies a banded Toeplitz structure,

Cov
�
�i ; �j

�
D

�
�2 i D j

�ji�j j ji � j j < q

This can be viewed as a moving-average structure with order equal to q – 1. The specifica-
tion TYPE=TOEP(1) is the same as �2I, and it can be useful for specifying the same variance
component for several effects.

TOEPH< (q) >
models a Toeplitz covariance structure. The correlations of this structure are banded as the
TOEP or TOEP(q) structures, but the variances are allowed to vary:

Cov
�
�i ; �j

�
D

(
�2i i D j

�ji�j j

q
�2i �

2
j i 6D j

The correlation parameters satisfy j�ji�j jj < 1. If you specify the optional value q, the cor-
relation parameters with ji � j j � q are set to zero, creating a banded correlation structure.
The specification TYPE=TOEPH(1) results in a diagonal covariance matrix with heterogeneous
variances.

UN< (q) >
specifies a completely general (unstructured) covariance matrix parameterized directly in terms
of variances and covariances,

Cov
�
�i ; �j

�
D �ij

The variances are constrained to be nonnegative, and the covariances are unconstrained. This
structure is not constrained to be nonnegative definite in order to avoid nonlinear constraints;
however, you can use the TYPE=CHOL structure if you want this constraint to be imposed by a
Cholesky factorization. If you specify the order parameter q, then PROC GLIMMIX estimates
only the first q bands of the matrix, setting elements in all higher bands equal to 0.



3038 F Chapter 41: The GLIMMIX Procedure

UNR< (q) >
specifies a completely general (unstructured) covariance matrix parameterized in terms of vari-
ances and correlations,

Cov
�
�i ; �j

�
D �i�j�ij

where �i denotes the standard deviation and the correlation �ij is zero when i D j and when
ji � j j � q, provided the order parameter q is given. This structure fits the same model as the
TYPE=UN(q) option, but with a different parameterization. The ith variance parameter is �2i .
The parameter �ij is the correlation between the ith and jth measurements; it satisfies j�ij j < 1.
If you specify the order parameter q, then PROC GLIMMIX estimates only the first q bands of
the matrix, setting all higher bands equal to zero.

VC
specifies standard variance components and is the default structure for both G-side and R-side
covariance structures. In a G-side covariance structure, a distinct variance component is assigned
to each effect. In an R-side structure TYPE=VC is usually used only to add overdispersion
effects or with the GROUP= option to specify a heterogeneous variance model.

Table 41.18 Covariance Structure Examples

Description Structure Example

Variance
Components

VC (default)

2664
�2B 0 0 0

0 �2B 0 0

0 0 �2AB 0

0 0 0 �2AB

3775

Compound
Symmetry

CS

2664
� C � � � �

� � C � � �

� � � C � �

� � � � C �

3775

Heterogeneous
CS

CSH

2664
�21 �1�2� �1�3� �1�4�

�2�1� �22 �2�3� �2�4�

�3�1� �3�2� �23 �3�4�

�4�1� �4�2� �4�3� �24

3775

First-Order
Autoregressive

AR(1) �2

2664
1 � �2 �3

� 1 � �2

�2 � 1 �

�3 �2 � 1

3775

Heterogeneous
AR(1)

ARH(1)

2664
�21 �1�2� �1�3�

2 �1�4�
3

�2�1� �22 �2�3� �2�4�
2

�3�1�
2 �3�2� �23 �3�4�

�4�1�
3 �4�2� �4�3� �24

3775

Unstructured UN

2664
�21 �21 �31 �41
�21 �22 �32 �42
�31 �32 �23 �43
�41 �42 �43 �24

3775
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Table 41.18 continued

Description Structure Example

Banded Main
Diagonal

UN(1)

2664
�21 0 0 0

0 �22 0 0

0 0 �23 0

0 0 0 �24

3775

Unstructured
Correlations

UNR

2664
�21 �1�2�21 �1�3�31 �1�4�41

�2�1�21 �22 �2�3�32 �2�4�42
�3�1�31 �3�2�32 �23 �3�4�43
�4�1�41 �4�2�42 �4�3�43 �24

3775

Toeplitz TOEP

2664
�2 �1 �2 �3
�1 �2 �1 �2
�2 �1 �2 �1
�3 �2 �1 �2

3775

Toeplitz with
Two Bands

TOEP(2)

2664
�2 �1 0 0

�1 �2 �1 0

0 �1 �2 �1
0 0 �1 �2

3775

Heterogeneous
Toeplitz

TOEPH

2664
�21 �1�2�1 �1�3�2 �1�4�3

�2�1�1 �22 �2�3�1 �2�4�2
�3�1�2 �3�2�1 �23 �3�4�1
�4�1�3 �4�2�2 �4�3�1 �24

3775

Spatial
Power

SP(POW)(c-list) �2

2664
1 �d12 �d13 �d14

�d21 1 �d23 �d24

�d31 �d32 1 �d34

�d41 �d42 �d43 1

3775

First-Order
Autoregressive
Moving-Average

ARMA(1,1) �2

2664
1 
 
� 
�2


 1 
 
�


� 
 1 



�2 
� 
 1

3775

First-Order
Factor
Analytic

FA(1)

2664
�21 C d1 �1�2 �1�3 �1�4
�2�1 �22 C d2 �2�3 �2�4
�3�1 �3�2 �23 C d3 �3�4
�4�1 �4�2 �4�3 �24 C d4

3775

Huynh-Feldt HF

2664 �21
�21C�

2
2

2
� �

�21C�
2
3

2
� �

�22C�
2
1

2
� � �22

�22C�
2
3

2
� �

�23C�
2
1

2
� �

�23C�
2
2

2
� � �23

3775
First-Order
Ante-dependence

ANTE(1)

24 �21 �1�2�1 �1�3�1�2
�2�1�1 �22 �2�3�2
�3�1�2�1 �3�2�2 �23

35
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V< =value-list >
requests that blocks of the estimated marginal variance-covariance matrix V.b�/ be displayed in gen-
eralized linear mixed models. This matrix is based on the last linearization as described in the section
“The Pseudo-model” on page 3054. You can use the value-list to select the subjects for which the
matrix is displayed. If value-list is not specified, the V matrix for the first subject is chosen.

Note that the value-list refers to subjects as the processing units in the “Dimensions” table. For
example, the following statements request that the estimated marginal variance matrix for the second
subject be displayed:

proc glimmix;
class A B;
model y = B;
random int / subject=A;
random int / subject=A*B v=2;

run;

The subject effect for processing in this case is the A effect, because it is contained in the A*B inter-
action. If there is only a single subject as per the “Dimensions” table, then the V option displays an
.n � n/ matrix.

See the section “Processing by Subjects” on page 3082 for how the GLIMMIX procedure determines
the number of subjects in the “Dimensions” table.

The GLIMMIX procedure displays blanks for values that are 0.

VC< =value-list >
displays the lower-triangular Cholesky root of the blocks of the estimated V.b�/ matrix. See the V
option for the specification of value-list.

VCI< =value-list >
displays the inverse Cholesky root of the blocks of the estimated V.b�/ matrix. See the V option for
the specification of value-list.

VCORR< =value-list >
displays the correlation matrix corresponding to the blocks of the estimated V.b�/ matrix. See the V
option for the specification of value-list.

VI< =value-list >
displays the inverse of the blocks of the estimated V.b�/ matrix. See the V option for the specification
of value-list.
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SLICE Statement
SLICE model-effect < / options > ;

The SLICE statement provides a general mechanism for performing a partitioned analysis of the LS-means
for an interaction. This analysis is also known as an analysis of simple effects (Winer 1971).

The SLICE statement uses most of the options of the LSMEANS statement that are summarized in Ta-
ble 41.8. The options SLICEDIFF=, SLICEDIFFTYPE=, and ODDS do not apply to the SLICE statement;
in the SLICE statement, the relevant options for SLICEDIFF= and SLICEDIFFTYPE= are the SLICEBY=
and the DIFF= options, respectively.

For details about the syntax of the SLICE statement, see the section “SLICE Statement” on page 498 of
Chapter 19, “Shared Concepts and Topics.”

STORE Statement
STORE < OUT= >item-store-name < / LABEL=‘label’ > ;

The STORE statement requests that the procedure save the context and results of the statistical analysis.
The resulting item store has a binary file format that cannot be modified. The contents of the item store can
be processed with the PLM procedure.

For details about the syntax of the STORE statement, see the section “STORE Statement” on page 501 in
Chapter 19, “Shared Concepts and Topics.”

WEIGHT Statement
WEIGHT variable ;

The WEIGHT statement replaces R with W�1=2RW�1=2, where W is a diagonal matrix containing the
weights. Observations with nonpositive or missing weights are not included in the resulting PROC GLIM-
MIX analysis. If a WEIGHT statement is not included, all observations used in the analysis are assigned a
weight of 1.
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Programming Statements
This section lists the programming statements available in PROC GLIMMIX to compute various aspects
of the generalized linear mixed model or output quantities. For example, you can compute model effects,
weights, frequency, subject, group, and other variables. You can use programming statements to define the
mean and variance functions. This section also documents the differences between programming statements
in PROC GLIMMIX and programming statements in the SAS DATA step. The syntax of programming
statements used in PROC GLIMMIX is identical to that used in the NLMIXED procedure (see Chapter 64,
“The NLMIXED Procedure,” and the MODEL procedure (see the SAS/ETS User’s Guide). Most of the
programming statements that can be used in the DATA step can also be used in the GLIMMIX procedure.
See SAS Statements: Reference for a description of SAS programming statements. The following are valid
statements:
ABORT;
ARRAY arrayname < [ dimensions ] > < $ > < variables-and-constants >;
CALL name < (expression < , expression . . . >) >;
DELETE;
DO < variable = expression < TO expression > < BY expression > >

< , expression < TO expression > < BY expression > > . . .
< WHILE expression > < UNTIL expression >;

END;
GOTO statement-label;
IF expression;
IF expression THEN program-statement;

ELSE program-statement;
variable = expression;
variable + expression;
LINK statement-label;
PUT < variable > < = > . . . ;
RETURN;
SELECT < (expression) >;
STOP;
SUBSTR(variable, index, length)= expression;
WHEN (expression)program-statement;

OTHERWISE program-statement;

For the most part, the SAS programming statements work the same as they do in the SAS DATA step, as
documented in SAS Language Reference: Concepts. However, there are several differences:

� The ABORT statement does not allow any arguments.

� The DO statement does not allow a character index variable. Thus

do i = 1,2,3;

is supported; however, the following statement is not supported:

do i = 'A','B','C';
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� The LAG function is not supported with PROC GLIMMIX.

� The PUT statement, used mostly for program debugging in PROC GLIMMIX, supports only some of
the features of the DATA step PUT statement, and it has some features not available with the DATA
step PUT statement:

– The PROC GLIMMIX PUT statement does not support line pointers, factored lists, iteration
factors, overprinting, _INFILE_, the colon (:) format modifier, or “$”.

– The PROC GLIMMIX PUT statement does support expressions, but the expression must be
enclosed in parentheses. For example, the following statement displays the square root of x:

put (sqrt(x));

– The PROC GLIMMIX PUT statement supports the item _PDV_ to display a formatted listing
of all variables in the program. For example:

put _pdv_;

� The WHEN and OTHERWISE statements enable you to specify more than one target statement. That
is, DO/END groups are not necessary for multiple statement WHENs. For example, the following
syntax is valid:

select;
when (exp1) stmt1;

stmt2;
when (exp2) stmt3;

stmt4;
end;

The LINK statement is used in a program to jump immediately to the label statement_label and to continue
program execution at that point. It is not used to specify a user-defined link function.

When coding your programming statements, you should avoid defining variables that begin with an under-
score (_), because they might conflict with internal variables created by PROC GLIMMIX.

User-Defined Link or Variance Function

Implied Variance Functions

While link functions are not unique for each distribution (see Table 41.12 for the default link functions),
the distribution does determine the variance function a.�/. This function expresses the variance of an
observation as a function of the mean, apart from weights, frequencies, and additional scale parameters. The
implied variance functions a.�/ of the GLIMMIX procedure are shown in Table 41.19 for the supported
distributions. For the binomial distribution, n denotes the number of trials in the events/trials syntax. For
the negative binomial distribution, k denotes the scale parameter. The multiplicative scale parameter � is
not included for the other distributions. The last column of the table indicates whether � has a value equal
to 1.0 for the particular distribution.
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Table 41.19 Variance Functions in PROC GLIMMIX

Variance function
DIST= Distribution a.�/ � � 1

BETA beta �.1 � �/=.1C �/ No
BINARY binary �.1 � �/ Yes
BINOMIAL | BIN | B binomial �.1 � �/=n Yes
EXPONENTIAL | EXPO exponential �2 Yes
GAMMA | GAM gamma �2 No
GAUSSIAN | G | NORMAL | N normal 1 No
GEOMETRIC | GEOM geometric �C �2 Yes
INVGAUSS | IGAUSSIAN | IG inverse Gaussian �3 No
LOGNORMAL | LOGN lognormal 1 No
NEGBINOMIAL | NEGBIN | NB negative binomial �C k�2 Yes
POISSON | POI | P Poisson � Yes
TCENTRAL | TDIST | T t �=.� � 2/ No

To change the variance function, you can use SAS programming statements and the predefined automatic
variables, as outlined in the following section. Your definition of a variance function will override the DIST=
option and its implied variance function. This has the following implication for parameter estimation with
the GLIMMIX procedure. When a user-defined link is available, the distribution of the data is determined
from the DIST= option, or the respective default for the type of response. In a GLM, for example, this
enables maximum likelihood estimation. If a user-defined variance function is provided, the DIST= option
is not honored and the distribution of the data is assumed unknown. In a GLM framework, only quasi-
likelihood estimation is then available to estimate the model parameters.

Automatic Variables

To specify your own link or variance function you can use SAS programming statements and draw on the
following automatic variables:

_LINP_ is the current value of the linear predictor. It equals either b� D x0b̌ C z0b
 C o orb� D x0b̌C o, where o is the value of the offset variable, or 0 if no offset is specified. The
estimated random effects solutions b
 are used in the calculation of the linear predictor
during the model fitting phase, if a linearization expands about the current values of 
 .
During the computation of output statistics, the EBLUPs are used if statistics depend on
them. For example, the following statements add the variable p to the output data set
glimmixout:

proc glimmix;
model y = x / dist=binary;
random int / subject=b;
p = 1/(1+exp(-_linp_);
output out=glimmixout;
id p;

run;
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Because no output statistics are requested in the OUTPUT statement that depend on the
random-effects solutions (BLUPs, EBEs), the value of _LINP_ in this example equals
x0b̌. On the contrary, the following statements also request conditional residuals on the
logistic scale:

proc glimmix;
model y = x / dist=binary;
random int / subject=b;
p = 1/(1+exp(-_linp_);
output out=glimmixout resid(blup)=r;
id p;

run;

The value of _LINP_ when computing the variable p is x0b̌C z0b
 . To ensure that com-
puted statistics are formed from x0b̌ and z0b
 terms as needed, it is recommended that
you use the automatic variables _XBETA_ and _ZGAMMA_ instead of _LINP_.

_MU_ expresses the mean of an observation as a function of the linear predictor, b� D g�1.b�/.
_N_ is the observation number in the sequence of the data read.

_VARIANCE_ is the estimate of the variance function, a.b�/.
_XBETA_ equals x0b̌.

_ZGAMMA_ equals z0b
 .

The automatic variable _N_ is incremented whenever the procedure reads an observation from the data set.
Observations that are not used in the analysis—for example, because of missing values or invalid weights—
are counted. The counter is reset to 1 at the start of every new BY group. Only in some circumstances will
_N_ equal the actual observation number. The symbol should thus be used sparingly to avoid unexpected
results.

You must observe the following syntax rules when you use the automatic variables. The _LINP_ symbol
cannot appear on the left side of programming statements; you cannot make an assignment to the _LINP_
variable. The value of the linear predictor is controlled by the CLASS, MODEL, and RANDOM statements
as well as the current parameter estimates and solutions. You can, however, use the _LINP_ variable on the
right side of other operations. Suppose, for example, that you want to transform the linear predictor prior to
applying the inverse log link. The following statements are not valid because the linear predictor appears in
an assignment:

proc glimmix;
_linp_ = sqrt(abs(_linp_));
_mu_ = exp(_linp_);
model count = logtstd / dist=poisson;

run;

The next statements achieve the desired result:

proc glimmix;
_mu_ = exp(sqrt(abs(_linp_)));
model count = logtstd / dist=poisson;

run;
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If the value of the linear predictor is altered in any way through programming statements, you need to ensure
that an assignment to _MU_ follows. The assignment to variable P in the next set of GLIMMIX statements
is without effect:

proc glimmix;
p = _linp_ + rannor(454);
model count = logtstd / dist=poisson;

run;

A user-defined link function is implied by expressing _MU_ as a function of _LINP_. That is, if � D
g�1.�/, you are providing an expression for the inverse link function with programming statements. It
is neither necessary nor possible to give an expression for the inverse operation, � D g.�/. The variance
function is determined by expressing _VARIANCE_ as a function of _MU_. If the _MU_ variable appears in
an assignment statement inside PROC GLIMMIX, the LINK= option of the MODEL statement is ignored. If
the _VARIANCE_ function appears in an assignment statement, the DIST= option is ignored. Furthermore,
the associated variance function per Table 41.19 is not honored. In short, user-defined expressions take
precedence over built-in defaults.

If you specify your own link and variance function, the assignment to _MU_ must precede an assignment
to the variable _VARIANCE_.

The following two sets of GLIMMIX statements yield the same parameter estimates, but the models differ
statistically:

proc glimmix;
class block entry;
model y/n = block entry / dist=binomial link=logit;

run;

proc glimmix;
class block entry;
prob = 1 / (1+exp(- _linp_));
_mu_ = n * prob ;
_variance_ = n * prob *(1-prob);
model y = block entry;

run;

The first GLIMMIX invocation models the proportion y=n as a binomial proportion with a logit link. The
DIST= and LINK= options are superfluous in this case, because the GLIMMIX procedure defaults to the
binomial distribution in light of the events/trials syntax. The logit link is that distribution’s default link. The
second set of GLIMMIX statements models the count variable y and takes the binomial sample size into
account through assignments to the mean and variance function. In contrast to the first set of GLIMMIX
statements, the distribution of y is unknown. Only its mean and variance are known. The model parameters
are estimated by maximum likelihood in the first case and by quasi-likelihood in the second case.
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Details: GLIMMIX Procedure

Generalized Linear Models Theory
A generalized linear model consists of the following:

� a linear predictor � D x0ˇ

� a monotonic mapping between the mean of the data and the linear predictor

� a response distribution in the exponential family of distributions

A density or mass function in this family can be written as

f .y/ D exp
�
y� � b.�/

�
C c.y; f .�//

�
for some functions b.�/ and c.�/. The parameter � is called the natural (canonical) parameter. The parameter
� is a scale parameter, and it is not present in all exponential family distributions. See Table 41.19 for a
list of distributions for which � � 1. In the case where observations are weighted, the scale parameter is
replaced with �=w in the preceding density (or mass function), where w is the weight associated with the
observation y.

The mean and variance of the data are related to the components of the density, EŒY � D � D b0.�/,
VarŒY � D �b00.�/, where primes denote first and second derivatives. If you express � as a function of �, the
relationship is known as the natural link or the canonical link function. In other words, modeling data with a
canonical link assumes that � D x0ˇ; the effect contributions are additive on the canonical scale. The second
derivative of b.�/, expressed as a function of �, is the variance function of the generalized linear model,
a.�/ D b00.�.�//. Note that because of this relationship, the distribution determines the variance function
and the canonical link function. You cannot, however, proceed in the opposite direction. If you provide a
user-specified variance function, the GLIMMIX procedure assumes that only the first two moments of the
response distribution are known. The full distribution of the data is then unknown and maximum likelihood
estimation is not possible. Instead, the GLIMMIX procedure then estimates parameters by quasi-likelihood.

Maximum Likelihood

The GLIMMIX procedure forms the log likelihoods of generalized linear models as

L.�; �I y/ D
nX
iD1

fi l.�i ; �Iyi ; wi /

where l.�i ; �Iyi ; wi / is the log likelihood contribution of the ith observation with weight wi and fi is the
value of the frequency variable. For the determination ofwi and fi , see the WEIGHT and FREQ statements.
The individual log likelihood contributions for the various distributions are as follows.
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Beta

l.�i ; �Iyi ; wi / D log
�

�.�=wi /

�.��=wi /�..1 � �/�=wi /

�
C .��=wi � 1/ logfyig
C ..1 � �/�=wi � 1/ logf1 � yig

VarŒY � D �.1 � �/=.1C �/; � > 0. See Ferrari and Cribari-Neto (2004).

Binary

l.�i ; �Iyi ; wi / D wi .yi logf�ig C .1 � yi / logf1 � �ig/

VarŒY � D �.1 � �/; � � 1.

Binomial

l.�i ; �Iyi ; wi / D wi .yi logf�ig C .ni � yi / logf1 � �ig/
C wi .logf�.ni C 1/g � logf�.yi C 1/g � logf�.ni � yi C 1/g/

where yi and ni are the events and trials in the events/trials syntax, and 0 < � < 1.
VarŒY=n� D �.1 � �/=n; � � 1.

Exponential

l.�i ; �Iyi ; wi / D

(
� logf�ig � yi=�i wi D 1

wi log
n
wiyi
�i

o
�
wiyi
�i
� logfyi�.wi /g wi 6D 1

VarŒY � D �2; � � 1.

Gamma

l.�i ; �Iyi ; wi / D wi� log
�
wiyi�

�i

�
�
wiyi�

�i
� logfyig � log f�.wi�/g

VarŒY � D ��2; � > 0.

Geometric

l.�i ; �Iyi ; wi / D yi log
�
�i

wi

�
� .yi C wi / log

�
1C

�i

wi

�
C log

�
�.yi C wi /

�.wi /�.yi C 1/

�
VarŒY � D �C �2; � � 1.

Inverse Gaussian

l.�i ; �Iyi ; wi / D �
1

2

"
wi .yi � �i /

2

yi��
2
i

C log

(
�y3i
wi

)
C logf2�g

#

VarŒY � D ��3; � > 0.
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“Lognormal”

l.�i ; �I logfyig; wi / D �
1

2

�
wi .logfyig � �i /2

�
C log

�
�

wi

�
C logf2�g

�
VarŒlogfY g� D �; � > 0.
If you specify DIST=LOGNORMAL with response variable Y, the GLIMMIX procedure
assumes that logfY g � N.�; �2/. Note that the preceding density is not the density of
Y.

Multinomial

l.�i ; �I yi ; wi / D wi
JX
jD1

yij logf�ij g

� � 1.

Negative Binomial

l.�i ; �Iyi ; wi / D yi log
�
k�i

wi

�
� .yi C wi=k/ log

�
1C

k�i

wi

�
C log

�
�.yi C wi=k/

�.wi=k/�.yi C 1/

�
VarŒY � D �C k�2; k > 0; � � 1.
For a given k, the negative binomial distribution is a member of the exponential family.
The parameter k is related to the scale of the data, because it is part of the variance
function. However, it cannot be factored from the variance, as is the case with the �
parameter in many other distributions. The parameter k is designated as “Scale” in the
“Parameter Estimates” table of the GLIMMIX procedure.

Normal (Gaussian)

l.�i ; �Iyi ; wi / D �
1

2

�
wi .yi � �i /

2

�
C log

�
�

wi

�
C logf2�g

�
VarŒY � D �; � > 0.

Poisson

l.�i ; �Iyi ; wi / D wi .yi logf�ig � �i � logf�.yi C 1/g/

VarŒY � D �; � � 1.

Shifted T

zi D �0:5 logf�=
p
wig C log f�.0:5.� C 1/g

� log f�.0:5�/g � 0:5 � log f��g

l.�i ; �Iyi ; wi / D �.�=2C 0:5/ log
�
1C

wi

�

.yi � �i /
2

�

�
C zi

� > 0; � > 0; VarŒY � D ��=.� � 2/.
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Define the parameter vector for the generalized linear model as � D ˇ, if � � 1, and as � D Œˇ0; ��0 other-
wise. ˇ denotes the fixed-effects parameters in the linear predictor. For the negative binomial distribution,
the relevant parameter vector is � D Œˇ0; k�0. The gradient and Hessian of the negative log likelihood are
then

g D �
@L.�I y/
@�

H D �
@2L.�I y/
@� @� 0

The GLIMMIX procedure computes the gradient vector and Hessian matrix analytically, unless your pro-
gramming statements involve functions whose derivatives are determined by finite differences. If the pro-
cedure is in scoring mode, H is replaced by its expected value. PROC GLIMMIX is in scoring mode when
the number n of SCORING=n iterations has not been exceeded and the optimization technique uses second
derivatives, or when the Hessian is computed at convergence and the EXPHESSIAN option is in effect.
Note that the objective function is the negative log likelihood when the GLIMMIX procedure fits a GLM
model. The procedure performs a minimization problem in this case.

In models for independent data with known distribution, parameter estimates are obtained by the method of
maximum likelihood. No parameters are profiled from the optimization. The default optimization technique
for GLMs is the Newton-Raphson algorithm, except for Gaussian models with identity link, which do not
require iterative model fitting. In the case of a Gaussian model, the scale parameter is estimated by restricted
maximum likelihood, because this estimate is unbiased. The results from the GLIMMIX procedure agree
with those from the GLM and REG procedure for such models. You can obtain the maximum likelihood
estimate of the scale parameter with the NOREML option in the PROC GLIMMIX statement. To change
the optimization algorithm, use the TECHNIQUE= option in the NLOPTIONS statement.

Standard errors of the parameter estimates are obtained from the inverse of the (observed or expected)
second derivative matrix H.

Scale and Dispersion Parameters

The parameter � in the log-likelihood functions is a scale parameter. McCullagh and Nelder (1989, p. 29)
refer to it as the dispersion parameter. With the exception of the normal distribution, � does not correspond
to the variance of an observation, the variance of an observation in a generalized linear model is a function
of � and �. In a generalized linear model (GLM mode), the GLIMMIX procedure displays the estimate of
� is as “Scale” in the “Parameter Estimates” table. Note that for some distributions this scale is different
from that reported by the GENMOD procedure in its “Parameter Estimates” table. The scale reported by
PROC GENMOD is sometimes a transformation of the dispersion parameter in the log-likelihood function.
Table 41.19 displays the relationship between the “Scale” entries reported by the two procedures in terms
of the � (or k) parameter in the GLIMMIX log-likelihood functions.

Table 41.19 Scales in Parameter Estimates Table

Distribution GLIMMIX Reports GENMOD Reports

Beta b� N/A
Gamma b� b�
Inverse Gaussian b� qb�
Negative binomial bk bk
Normal b� DbVarŒY �

qb�
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Note that for normal linear models, PROC GLIMMIX by default estimates the parameters by restricted
maximum likelihood, whereas PROC GENMOD estimates the parameters by maximum likelihood. As a
consequence, the scale parameter in the “Parameter Estimates” table of the GLIMMIX procedure coincides
for these models with the mean-squared error estimate of the GLM or REG procedures. To obtain maximum
likelihood estimates in a normal linear model in the GLIMMIX procedure, specify the NOREML option in
the PROC GLIMMIX statement.

Quasi-likelihood for Independent Data

Quasi-likelihood estimation uses only the first and second moment of the response. In the case of indepen-
dent data, this requires only a specification of the mean and variance of your data. The GLIMMIX procedure
estimates parameters by quasi-likelihood, if the following conditions are met:

� The response distribution is unknown, because of a user-specified variance function.

� There are no G-side random effects.

� There are no R-side covariance structures or at most an overdispersion parameter.

Under some mild regularity conditions, the function

Q.�i ; yi / D

Z �i

yi

yi � t

�a.t/
dt

known as the log quasi-likelihood of the ith observation, has some properties of a log-likelihood function
(McCullagh and Nelder 1989, p. 325). For example, the expected value of its derivative is zero, and the
variance of its derivative equals the negative of the expected value of the second derivative. Consequently,

QL.�; �; y/ D
nX
iD1

fiwi
Yi � �i

�a.�i /

can serve as the score function for estimation. Quasi-likelihood estimation takes as the gradient and “Hes-
sian” matrix—with respect to the fixed-effects parameters ˇ—the quantities

gql D
�
gql;j

�
D

�
@QL.�; �; y/

@ˇj

�
D D0V�1.Y � �/=�

Hql D
�
hql;jk

�
D

�
@2QL.�; �; y/

@ˇj @ˇk

�
D D0V�1D=�

In this expression, D is a matrix of derivatives of � with respect to the elements in ˇ, and V is a diagonal
matrix containing variance functions, V D Œa.�1/; � � � ; a.�n/�. Notice that Hql is not the second derivative
matrix of Q.�; y/. Rather, it is the negative of the expected value of @gql=@ˇ. Hql thus has the form of a
“scoring Hessian.”

The GLIMMIX procedure fixes the scale parameter � at 1.0 by default. To estimate the parameter, add the
statement

random _residual_;
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The resulting estimator (McCullagh and Nelder 1989, p. 328) is

b� D 1

m

nX
iD1

fiwi
.yi �b�i /2
a.b�i /

where m D f � rankfXg if the NOREML option is in effect, m = f otherwise, and f is the sum of the
frequencies.

See Example 41.4 for an application of quasi-likelihood estimation with PROC GLIMMIX.

Effects of Adding Overdispersion

You can add a multiplicative overdispersion parameter to a generalized linear model in the GLIMMIX
procedure with the statement

random _residual_;

For models in which � � 1, this effectively lifts the constraint of the parameter. In models that already
contain a � or k scale parameter—such as the normal, gamma, or negative binomial model—the statement
adds a multiplicative scalar (the overdispersion parameter, �o) to the variance function.

The overdispersion parameter is estimated from Pearson’s statistic after all other parameters have been
determined by (restricted) maximum likelihood or quasi-likelihood. This estimate is

b�o D 1

�pm

nX
iD1

fiwi
.yi � �i /

2

a.�i /

wherem D f � rankfXg if the NOREML option is in effect, andm D f otherwise, and f is the sum of the
frequencies. The power p is –1 for the gamma distribution and 1 otherwise.

Adding an overdispersion parameter does not alter any of the other parameter estimates. It only changes the
variance-covariance matrix of the estimates by a certain factor. If overdispersion arises from correlations
among the observations, then you should investigate more complex random-effects structures.

Generalized Linear Mixed Models Theory

Model or Integral Approximation

In a generalized linear model, the log likelihood is well defined, and an objective function for estimation of
the parameters is simple to construct based on the independence of the data. In a GLMM, several problems
must be overcome before an objective function can be computed.

� The model might be vacuous in the sense that no valid joint distribution can be constructed either in
general or for a particular set of parameter values. For example, if Y is an equicorrelated .n � 1/
vector of binary responses with the same success probability and a symmetric distribution, then the
lower bound on the correlation parameter depends on n and � (Gilliland and Schabenberger 2001).
If further restrictions are placed on the joint distribution, as in Bahadur (1961), the correlation is also
restricted from above.
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� The dependency between mean and variance for nonnormal data places constraints on the possible
correlation models that simultaneously yield valid joint distributions and a desired conditional distri-
butions. Thus, for example, aspiring for conditional Poisson variates that are marginally correlated
according to a spherical spatial process might not be possible.

� Even if the joint distribution is feasible mathematically, it still can be out of reach computationally.
When data are independent, conditional on the random effects, the marginal log likelihood can in
principle be constructed by integrating out the random effects from the joint distribution. However,
numerical integration is practical only when the number of random effects is small and when the data
have a clustered (subject) structure.

Because of these special features of generalized linear mixed models, many estimation methods have been
put forth in the literature. The two basic approaches are (1) to approximate the objective function and (2)
to approximate the model. Algorithms in the second category can be expressed in terms of Taylor series
(linearizations) and are hence also known as linearization methods. They employ expansions to approximate
the model by one based on pseudo-data with fewer nonlinear components. The process of computing the
linear approximation must be repeated several times until some criterion indicates lack of further progress.
Schabenberger and Gregoire (1996) list numerous algorithms based on Taylor series for the case of clustered
data alone. The fitting methods based on linearizations are usually doubly iterative. The generalized linear
mixed model is approximated by a linear mixed model based on current values of the covariance parameter
estimates. The resulting linear mixed model is then fit, which is itself an iterative process. On convergence,
the new parameter estimates are used to update the linearization, which results in a new linear mixed model.
The process stops when parameter estimates between successive linear mixed model fits change only within
a specified tolerance.

Integral approximation methods approximate the log likelihood of the GLMM and submit the approximated
function to numerical optimization. Various techniques are used to compute the approximation: Laplace
methods, quadrature methods, Monte Carlo integration, and Markov chain Monte Carlo methods. The
advantage of integral approximation methods is to provide an actual objective function for optimization.
This enables you to perform likelihood ratio tests among nested models and to compute likelihood-based fit
statistics. The estimation process is singly iterative. The disadvantage of integral approximation methods
is the difficulty of accommodating crossed random effects and multiple subject effects, and the inability to
accommodate R-side covariance structures, even only R-side overdispersion. The number of random effects
should be small for integral approximation methods to be practically feasible.

The advantages of linearization-based methods include a relatively simple form of the linearized model that
typically can be fit based on only the mean and variance in the linearized form. Models for which the joint
distribution is difficult—or impossible—to ascertain can be fit with linearization-based approaches. Models
with correlated errors, a large number of random effects, crossed random effects, and multiple types of
subjects are thus excellent candidates for linearization methods. The disadvantages of this approach include
the absence of a true objective function for the overall optimization process and potentially biased estimates,
especially for binary data when the number of observations per subject is small (see the section “Notes on
Bias of Estimators” on page 3066 for further comments and considerations about the bias of estimates in
generalized linear mixed models). Because the objective function to be optimized after each linearization
update depends on the current pseudo-data, objective functions are not comparable across linearizations.
The estimation process can fail at both levels of the double iteration scheme.

By default the GLIMMIX procedure fits generalized linear mixed models based on linearizations. The
default estimation method in GLIMMIX for models containing random effects is a technique known as
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restricted pseudo-likelihood (RPL) (Wolfinger and O’Connell 1993) estimation with an expansion around
the current estimate of the best linear unbiased predictors of the random effects (METHOD=RSPL).

Two maximum likelihood estimation methods based on integral approximation are available in the GLIM-
MIX procedure. If you choose METHOD=LAPLACE in a GLMM, the GLIMMIX procedure performs
maximum likelihood estimation based on a Laplace approximation of the marginal log likelihood. See
the section “Maximum Likelihood Estimation Based on Laplace Approximation” on page 3059 for de-
tails about the Laplace approximation with PROC GLIMMIX. If you choose METHOD=QUAD in the
PROC GLIMMIX statement in a generalized linear mixed model, the GLIMMIX procedure estimates the
model parameters by adaptive Gauss-Hermite quadrature. See the section “Maximum Likelihood Estima-
tion Based on Adaptive Quadrature” on page 3062 for details about the adaptive Gauss-Hermite quadrature
approximation with PROC GLIMMIX.

The following subsections discuss the three estimation methods in turn. Keep in mind that your modeling
possibilities are increasingly restricted in the order of these subsections. For example, in the class of general-
ized linear mixed models, the pseudo-likelihood estimation methods place no restrictions on the covariance
structure, and Laplace estimation adds restriction with respect to the R-side covariance structure. Adaptive
quadrature estimation further requires a clustered data structure—that is, the data must be processed by
subjects.

Table 41.20 Model Restrictions Depending on Estimation Method

Method Restriction

RSPL, RMPL None

MSPL, MMPL None

LAPLACE No R-side effects

QUAD No R-side effects
Requires SUBJECT= effect
Requires processing by subjects

Pseudo-likelihood Estimation Based on Linearization

The Pseudo-model
Recall from the section “Notation for the Generalized Linear Mixed Model” on page 2918 that

EŒYj
� D g�1.Xˇ C Z
/ D g�1.�/ D �

where 
 � N.0;G/ and VarŒYj
� D A1=2RA1=2. Following Wolfinger and O’Connell (1993), a first-order
Taylor series of � about ě ande
 yields

g�1.�/
:
D g�1.e�/C e�X.ˇ � ě/C e�Z.
 �e
/

where

e� D �@g�1.�/
@�

�
ě;e


is a diagonal matrix of derivatives of the conditional mean evaluated at the expansion locus. Rearranging
terms yields the expressione��1.� � g�1.e�//CXěC Ze
 :

D Xˇ C Z
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The left side is the expected value, conditional on 
 , of

e��1.Y � g�1.e�//CXěC Ze
 � P

and

VarŒPj
� D e��1A1=2RA1=2e��1
You can thus consider the model

P D Xˇ C Z
 C �

which is a linear mixed model with pseudo-response P, fixed effects ˇ, random effects 
 , and VarŒ�� D
VarŒPj
�.

Objective Functions
Now define

V.�/ D ZGZ0 C e��1A1=2RA1=2e��1
as the marginal variance in the linear mixed pseudo-model, where � is the .q � 1/ parameter vector con-
taining all unknowns in G and R. Based on this linearized model, an objective function can be defined,
assuming that the distribution of P is known. The GLIMMIX procedure assumes that � has a normal distri-
bution. The maximum log pseudo-likelihood (MxPL) and restricted log pseudo-likelihood (RxPL) for P are
then

l.�; p/ D �
1

2
log jV.�/j �

1

2
r0V.�/�1r �

f

2
logf2�g

lR.�; p/ D �
1

2
log jV.�/j �

1

2
r0V.�/�1r �

1

2
log jX0V.�/�1Xj �

f � k

2
logf2�g

with r D p�X.X0V�1X/�X0V�1p. f denotes the sum of the frequencies used in the analysis, and k denotes
the rank of X. The fixed-effects parameters ˇ are profiled from these expressions. The parameters in � are
estimated by the optimization techniques specified in the NLOPTIONS statement. The objective function
for minimization is �2l.�; p/ or �2lR.�; p/. At convergence, the profiled parameters are estimated and the
random effects are predicted as

b̌D .X0V.b�/�1X/�X0V.b�/�1pb
 D bGZ0V.b�/�1br
With these statistics, the pseudo-response and error weights of the linearized model are recomputed and
the objective function is minimized again. The predictors b
 are the estimated BLUPs in the approximated
linear model. This process continues until the relative change between parameter estimates at two succes-
sive (outer) iterations is sufficiently small. See the PCONV= option in the PROC GLIMMIX statement
for the computational details about how the GLIMMIX procedure compares parameter estimates across
optimizations.

If the conditional distribution contains a scale parameter � 6D 1 (Table 41.19), the GLIMMIX procedure
profiles this parameter in GLMMs from the log pseudo-likelihoods as well. To this end define

V.��/ D e��1A1=2R�A1=2e��1 C ZG�Z0
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where �� is the covariance parameter vector with q – 1 elements. The matrices G� and R� are appropriately
reparameterized versions of G and R. For example, if G has a variance component structure and R D �I,
then �� contains ratios of the variance components and �, and R� D I. The solution forb� is

b� Dbr0V.b��/�1br=m
where m = f for MxPL and m = f – k for RxPL. Substitution into the previous functions yields the profiled
log pseudo-likelihoods,

l.��; p/ D�
1

2
log jV.��/j �

f

2
log

˚
r0V.��/�1r

	
�
f

2
.1C logf2�=f g/

lR.�
�; p/ D�

1

2
log jV.��/j �

f � k

2
log

˚
r0V.��/�1r

	
�
1

2
log jX0V.��/�1Xj �

f � k

2
.1C logf2�=.f � k/g/

Profiling of � can be suppressed with the NOPROFILE option in the PROC GLIMMIX statement.

Where possible, the objective function, its gradient, and its Hessian employ the sweep-based W-
transformation ( Hemmerle and Hartley 1973; Goodnight 1979; Goodnight and Hemmerle 1979). Further
details about the minimization process in the general linear mixed model can be found in Wolfinger, Tobias,
and Sall (1994).

Estimated Precision of Estimates
The GLIMMIX procedure produces estimates of the variability of b̌, b� , and estimates of the prediction
variability forb
 , VarŒb
 � 
�. Denote as S the matrix

S �bVarŒPj
� D e��1A1=2RA1=2e��1
where all components on the right side are evaluated at the converged estimates. The mixed model equations
(Henderson 1984) in the linear mixed (pseudo-)model are then�

X0S�1X X0S�1Z
Z0S�1X Z0S�1ZCG.b�/�1

� � b̌b

�
D

�
X0S�1p
Z0S�1p

�
and

C D
�

X0S�1X X0S�1Z
Z0S�1X Z0S�1ZCG.b�/�1

��

D

" b� �b�X0V.b�/�1ZG.b�/
�G.b�/Z0V.b�/�1Xb� MCG.b�/Z0V.b�/�1Xb�X0V.b�/�1ZG.b�/

#

is the approximate estimated variance-covariance matrix of Œb̌0;b
 0 � 
 0�0. Here, b� D .X0V.b�/�1X/� and
M D .Z0S�1ZCG.b�/�1/�1.
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The square roots of the diagonal elements of b� are reported in the Standard Error column of the “Parameter
Estimates” table. This table is produced with the SOLUTION option in the MODEL statement. The predic-
tion standard errors of the random-effects solutions are reported in the Std Err Pred column of the “Solution
for Random Effects” table. This table is produced with the SOLUTION option in the RANDOM statement.

As a cautionary note, C tends to underestimate the true sampling variability of [b̌0;b
 0�0, because no ac-
count is made for the uncertainty in estimating G and R. Although inflation factors have been proposed
(Kackar and Harville 1984; Kass and Steffey 1989; Prasad and Rao 1990), they tend to be small for data
sets that are fairly well balanced. PROC GLIMMIX does not compute any inflation factors by default.
The DDFM=KENWARDROGER option in the MODEL statement prompts PROC GLIMMIX to compute
a specific inflation factor (Kenward and Roger 1997), along with Satterthwaite-based degrees of freedom.

If G.b�/ is singular, or if you use the CHOL option of the PROC GLIMMIX statement, the mixed model
equations are modified as follows. Let L denote the lower triangular matrix so that LL0 D G.b�/. PROC
GLIMMIX then solves the equations�

X0S�1X X0S�1ZL
L0Z0S�1X L0Z0S�1ZLC I

� � b̌b�
�
D

�
X0S�1p

L0Z0S�1p

�
and transformsb� and a generalized inverse of the left-side coefficient matrix by using L.

The asymptotic covariance matrix of the covariance parameter estimator b� is computed based on the ob-
served or expected Hessian matrix of the optimization procedure. Consider first the case where the scale
parameter � is not present or not profiled. Because ˇ is profiled from the pseudo-likelihood, the objec-
tive function for minimization is f .�/ D �2l.�; p/ for METHOD=MSPL and METHOD=MMPL and
f .�/ D �2lR.�; p/ for METHOD=RSPL and METHOD=RMPL. Denote the observed Hessian (second
derivative) matrix as

H D
@2f .�/

@� @� 0

The GLIMMIX procedure computes the variance of b� by default as 2H�1. If the Hessian is not positive
definite, a sweep-based generalized inverse is used instead. When the EXPHESSIAN option of the PROC
GLIMMIX statement is used, or when the procedure is in scoring mode at convergence (see the SCORING
option in the PROC GLIMMIX statement), the observed Hessian is replaced with an approximated expected
Hessian matrix in these calculations.

Following Wolfinger, Tobias, and Sall (1994), define the following components of the gradient and Hessian
in the optimization:

g1 D
@

@�
r0V.�/�1r

H1 D
@2

@� @� 0
logfV.�/g

H2 D
@2

@� @� 0
r0V.�/�1r

H3 D
@2

@� @� 0
logfjX0V.�/�1Xjg
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Table 41.21 gives expressions for the Hessian matrix H depending on estimation method, profiling, and
scoring.

Table 41.21 Hessian Computation in GLIMMIX

Profiling Scoring MxPL RxPL

No No H1 CH2 H1 CH2 CH3

No Yes �H1 �H1 CH3

No Modified �H1 �H1 �H3

Yes No
�

H1 CH2=� �g2=�2

�g02=�
2 f=�2

� �
H1 CH2=� CH3 �g2=�2

�g02=�
2 .f � k/=�2

�

Yes Yes
�
�H1 �g2=�2

�g02=�
2 f=�2

� �
�H1 CH3 �g2=�2

�g02=�
2 .f � k/=�2

�

Yes Modified
�
�H1 �g2=�2

�g02=�
2 f=�2

� �
�H1 �H3 �g2=�2

�g02=�
2 .f � k/=�2

�

The “Modified” expressions for the Hessian under scoring in RxPL estimation refer to a modified scoring
method. In some cases, the modification leads to faster convergence than the standard scoring algorithm.
The modification is requested with the SCOREMOD option in the PROC GLIMMIX statement.

Finally, in the case of a profiled scale parameter �, the Hessian for the .��; �/ parameterization is converted
into that for the � parameterization as

H.�/ D BH.��; �/B0

where

B D

2664
1=� 0 � � � 0 0

0 1=� � � � 0 0

0 � � � � � � 1=� 0

���1 =� ���2 =� � � � ���q�1=� 1

3775

Subject-Specific and Population-Averaged (Marginal) Expansions
There are two basic choices for the expansion locus of the linearization. A subject-specific (SS) expansion
uses

ěD b̌ e
 D b

which are the current estimates of the fixed effects and estimated BLUPs. The population-averaged (PA)
expansion expands about the same fixed effects and the expected value of the random effects

ěD b̌ e
 D 0
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To recompute the pseudo-response and weights in the SS expansion, the BLUPs must be computed every
time the objective function in the linear mixed model is maximized. The PA expansion does not require any
BLUPs. The four pseudo-likelihood methods implemented in the GLIMMIX procedure are the 2�2 factorial
combination between two expansion loci and residual versus maximum pseudo-likelihood estimation. The
following table shows the combination and the corresponding values of the METHOD= option (PROC
GLIMMIX statement); METHOD=RSPL is the default.

Type of Expansion Locus
PL b
 EŒ
�

residual RSPL RMPL
maximum MSPL MMPL

Maximum Likelihood Estimation Based on Laplace Approximation

Objective Function
Let ˇ denote the vector of fixed-effects parameters and � the vector of covariance parameters. For Laplace
estimation in the GLIMMIX procedure, � includes the G-side parameters and a possible scale parameter �,
provided that the conditional distribution of the data contains such a scale parameter. �� is the vector of the
G-side parameters.

The marginal distribution of the data in a mixed model can be expressed as

p.y/ D
Z
p.yj
;ˇ; �/ p.
j��/ d


D

Z
exp

˚
logfp.yj
;ˇ; �/g C logfp.
j��/g

	
d


D

Z
exp fclf .y;ˇ;�I
/g d


If the constant cl is large, the Laplace approximation of this integral is

L.ˇ;�Ib
; y/ D �2�
cl

�n
=2
j � f 00.y;ˇ;�Ib
/j�1=2 eclf .y;ˇ;�Ib
/

where n
 is the number of elements in 
 , f 00 is the second derivative matrix

f 00.y;ˇ;�Ib
/ D @2f .y;ˇ;�I
/
@
@
 0

jb

andb
 satisfies the first-order condition

@f .y;ˇ;�I
/
@


D 0

The objective function for Laplace parameter estimation in the GLIMMIX procedure is�2 logfL.ˇ;� b
; y/g.
The optimization process is singly iterative, but because b
 depends on b̌ and b� , the GLIMMIX procedure
solves a suboptimization problem to determine for given values of b̌ and b� the random-effects solution
vector that maximizes f .y;ˇ;�I
/.



3060 F Chapter 41: The GLIMMIX Procedure

When you have longitudinal or clustered data with m independent subjects or clusters, the vector of obser-
vations can be written as y D Œy01; � � � ; y

0
m�
0, where yi is an ni �1 vector of observations for subject (cluster)

i (i D 1; � � � ; m). In this case, assuming conditional independence such that

p.yi j
i / D
niY
jD1

p.yij j
i /

the marginal distribution of the data can be expressed as

p.y/ D
mY
iD1

p.yi / D
mY
iD1

Z
p.yi j
i /p.
i / d
i

D

mY
iD1

Z
exp fnif .yi ;ˇ;�I
i /g d
i

where

nif .yi ;ˇ;�I
i / D log fp.yi j
i / p.
i /g

D

niX
jD1

log
˚
p.yij j
i /

	
C log fp.
i /g

When the number of observations within a cluster, ni , is large, the Laplace approximation to the ith individ-
ual’s marginal probability density function is

p.yi jˇ;�/ D
Z

exp fnif .yi ;ˇ;�I
i /g d
i

D
.2�/n
=2

j � nif 00.yi ;ˇ;�Ib
 i /j1=2 exp fnif .yi ;ˇ;�Ib
 i /g
where n
i is the common dimension of the random effects, 
i . In this case, provided that the constant
cl D minfnig is large, the Laplace approximation to the marginal log likelihood is

log fL.ˇ;�Ib
; y/g D mX
iD1

n
nif .y;ˇ;�Ib
 i /C n
i

2
logf2�g

�
1

2
log j � nif 00.ˇ;�Ib
 i /j�

which serves as the objective function for the METHOD=LAPLACE estimator in PROC GLIMMIX.

The Laplace approximation implemented in the GLIMMIX procedure differs from that in Wolfinger (1993)
and Pinheiro and Bates (1995) in important respects. Wolfinger (1993) assumed a flat prior for ˇ and
expanded the integrand around ˇ and 
 , leaving only the covariance parameters for the overall optimization.
The “fixed” effects ˇ and the random effects 
 are determined in a suboptimization that takes the form of
a linear mixed model step with pseudo-data. The GLIMMIX procedure involves only the random effects
vector 
 in the suboptimization. Pinheiro and Bates (1995) and Wolfinger (1993) consider a modified
Laplace approximation that replaces the second derivative f 00.y;ˇ;�Ib
/ with an (approximate) expected
value, akin to scoring. The GLIMMIX procedure does not use an approximation to f 00.y;ˇ;�Ib
/. The
METHOD=RSPL estimates in PROC GLIMMIX are equivalent to the estimates obtained with the modified
Laplace approximation in Wolfinger (1993). The objective functions of METHOD=RSPL and Wolfinger
(1993) differ in a constant that depends on the number of parameters.
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Asymptotic Properties and the Importance of Subjects
Suppose that the GLIMMIX procedure processes your data by subjects (see the section “Processing by Sub-
jects” on page 3082) and let ni denote the number of observations per subject, i D 1; : : : ; s. Arguments in
Vonesh (1996) show that the maximum likelihood estimator based on the Laplace approximation is a con-
sistent estimator to order Opfmaxf1=

p
sg; 1=minfnigg. In other words, as the number of subjects and the

number of observations per subject grows, the small-sample bias of the Laplace estimator disappears. Note
that the term involving the number of subjects in this maximum relates to standard asymptotic theory, and
the term involving the number of observations per subject relates to the accuracy of the Laplace approxima-
tion (Vonesh 1996). In the case where random effects enter the model linearly, the Laplace approximation
is exact and the requirement that minfnig ! 1 can be dropped.

If your model is not processed by subjects but is equivalent to a subject model, the asymptotics with respect
to s still apply, because the Hessian matrix of the suboptimization for 
 breaks into s separate blocks. For
example, the following two models are equivalent with respect to s and ni , although only for the first model
does PROC GLIMMIX process the data explicitly by subjects:

proc glimmix method=laplace;
class sub A;
model y = A;
random intercept / subject=sub;

run;

proc glimmix method=laplace;
class sub A;
model y = A;
random sub;

run;

The same holds, for example, for models with independent nested random effects. The following two
models are equivalent, and you can derive asymptotic properties related to s and minfnig from the model in
the first run:

proc glimmix method=laplace;
class A B block;
model y = A B A*B;
random intercept A / subject=block;

run;

proc glimmix method=laplace;
class A B block;
model y = A B A*B;
random block a*block;

run;

The Laplace approximation requires that the dimension of the integral does not increase with the size of the
sample. Otherwise the error of the likelihood approximation does not diminish with ni . This is the case,
for example, with exchangeable arrays (Shun and McCullagh 1995), crossed random effects (Shun 1997),
and correlated random effects of arbitrary dimension (Raudenbush, Yang, and Yosef 2000). Results in Shun
(1997), for example, show that even in this case the standard Laplace approximation has smaller bias than
pseudo-likelihood estimates.
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Maximum Likelihood Estimation Based on Adaptive Quadrature

Quadrature methods, like the Laplace approximation, approximate integrals. If you choose
METHOD=QUAD for a generalized linear mixed model, the GLIMMIX procedure approximates the
marginal log likelihood with an adaptive Gauss-Hermite quadrature rule. Gaussian quadrature is particu-
larly well suited to numerically evaluate integrals against probability measures (Lange 1999, Ch. 16). And
Gauss-Hermite quadrature is appropriate when the density has kernel expf�x2g and integration extends
over the real line, as is the case for the normal distribution. Suppose that p.x/ is a probability density
function and the function f .x/ is to be integrated against it. Then the quadrature rule isZ 1

�1

f .x/p.x/ dx �

NX
iD1

wif .xi /

where N denotes the number of quadrature points, the wi are the quadrature weights, and the xi are the
abscissas. The Gaussian quadrature chooses abscissas in areas of high density, and if p.x/ is continuous,
the quadrature rule is exact if f .x/ is a polynomial of up to degree 2N – 1. In the generalized linear mixed
model the roles of f .x/ and p.x/ are played by the conditional distribution of the data given the random
effects, and the random-effects distribution, respectively. Quadrature abscissas and weights are those of
the standard Gauss-Hermite quadrature (Golub and Welsch 1969; see also Table 25.10 of Abramowitz and
Stegun 1972; Evans 1993).

A numerical integration rule is called adaptive when it uses a variable step size to control the error of the
approximation. For example, an adaptive trapezoidal rule uses serial splitting of intervals at midpoints until
a desired tolerance is achieved. The quadrature rule in the GLIMMIX procedure is adaptive in the following
sense: if you do not specify the number of quadrature points (nodes) with the QPOINTS= suboption of
the METHOD=QUAD option, then the number of quadrature points is determined by evaluating the log
likelihood at the starting values at a successively larger number of nodes until a tolerance is met (for more
details see the text under the heading “Starting Values” in the next section). Furthermore, the GLIMMIX
procedure centers and scales the quadrature points by using the empirical Bayes estimates (EBEs) of the
random effects and the Hessian (second derivative) matrix from the EBE suboptimization. This centering
and scaling improves the likelihood approximation by placing the abscissas according to the density function
of the random effects. It is not, however, adaptiveness in the previously stated sense.

Objective Function
Let ˇ denote the vector of fixed-effects parameters and � the vector of covariance parameters. For quadra-
ture estimation in the GLIMMIX procedure, � includes the G-side parameters and a possible scale parameter
�, provided that the conditional distribution of the data contains such a scale parameter. �� is the vector of
the G-side parameters. The marginal distribution of the data for subject i in a mixed model can be expressed
as

p.yi / D
Z
� � �

Z
p.yi j
i ;ˇ; �/ p.
i j��/ d
i

Suppose Nq denotes the number of quadrature points in each dimension (for each random effect) and r
denotes the number of random effects. For each subject, obtain the empirical Bayes estimates of 
i as the
vectorb
 i that minimizes

� log
˚
p.yi j
i ;ˇ; �/p.
i j��/

	
D f .yi ;ˇ;�I
i /

If z D Œz1; � � � ; zNq � are the standard abscissas for Gauss-Hermite quadrature, and z�j D Œzj1 ; � � � ; zjr � is a
point on the r-dimensional quadrature grid, then the centered and scaled abscissas are

a�j D b
 i C 21=2f 00.yi ;ˇ;�Ib
 i /�1=2z�j
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As for the Laplace approximation, f 00 is the second derivative matrix with respect to the random effects,

f 00.yi ;ˇ;�Ib
 i / D @2f .yi ;ˇ;�I
i /
@
i@


0
i

jb
i
These centered and scaled abscissas, along with the Gauss-Hermite quadrature weights w D Œw1; � � � ; wNq �,
are used to construct the r-dimensional integral by a sequence of one-dimensional rules

p.yi / D
Z
� � �

Z
p.yi j
i ;ˇ; �/ p.
i j��/ d
i

� 2r=2jf 00.yi ;ˇ;�Ib
 i /j�1=2
NqX
j1D1

� � �

NqX
jrD1

"
p.yi ja�j ;ˇ; �/p.a

�
j j�
�/

rY
kD1

wjk exp z2jk

#

The right-hand side of this expression, properly accumulated across subjects, is the objective function for
adaptive quadrature estimation in the GLIMMIX procedure.

Quadrature or Laplace Approximation
If you select the quadrature rule with a single quadrature point, namely

proc glimmix method=quad(qpoints=1);

the results will be identical to METHOD=LAPLACE. Computationally, the two methods are not identical,
however. METHOD=LAPLACE can be applied to a considerably larger class of models. For example,
crossed random effects, models without subjects, or models with non-nested subjects can be handled with
the Laplace approximation but not with quadrature. Furthermore, METHOD=LAPLACE draws on a num-
ber of computational simplifications that can increase its efficiency compared to a quadrature algorithm with
a single node. For example, the Laplace approximation is possible with unbounded covariance parameter
estimates (NOBOUND option in the PROC GLIMMIX statement) and can permit certain types of negative
definite or indefinite G matrices. The adaptive quadrature approximation with scaled abscissas typically
breaks down when G is not at least positive semidefinite.

As the number of random effects grows—for example, if you have nested random effects—quadrature
quickly becomes computationally infeasible, due to the high dimensionality of the integral. To this end it
is worthwhile to clarify the issues of dimensionality and computational effort as related to the number of
quadrature nodes. Suppose that the A effect has 4 levels and consider the following statements:

proc glimmix method=quad(qpoints=5);
class A id;
model y = / dist=negbin;
random A / subject=id;

run;

For each subject, computing the marginal log likelihood requires the numerical evaluation of a four-
dimensional integral. As part of this evaluation 54 D 625 conditional log likelihoods need to be computed
for each observation on each pass through the data. As the number of quadrature points or the number
of random effects increases, this constitutes a sizable computational effort. Suppose, for example, that an
additional random effect with b = 2 levels is added as an interaction. The following statements then require
evaluation of 5.4C8/ D 244140625 conditional log likelihoods for each observation one each pass through
the data:
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proc glimmix method=quad(qpoints=5);
class A B id;
model y = / dist=negbin;
random A A*B / subject=id;

run;

As the number of random effects increases, Laplace approximation presents a computationally more expe-
dient alternative.

If you wonder whether METHOD=LAPLACE would present a viable alternative to a model that you can fit
with METHOD=QUAD, the “Optimization Information” table can provide some insights. The table con-
tains as its last entry the number of quadrature points determined by PROC GLIMMIX to yield a sufficiently
accurate approximation of the log likelihood (at the starting values). In many cases, a single quadrature node
is sufficient, in which case the estimates are identical to those of METHOD=LAPLACE.

Aspects Common to Adaptive Quadrature and Laplace Approximation

Estimated Precision of Estimates
Denote as H the second derivative matrix

H D �
@2 logfL.ˇ;� b
/g
@Œˇ;��@Œˇ0;� 0�

evaluated at the converged solution of the optimization process. Partition its inverse as

H�1 D
�

C.ˇ;ˇ/ C.ˇ;�/
C.�;ˇ/ C.�;�/

�
For METHOD=LAPLACE and METHOD=QUAD, the GLIMMIX procedure computes H by finite forward
differences based on the analytic gradient of logfL.ˇ;� b
/g. The partition C.�;�/ serves as the asymp-
totic covariance matrix of the covariance parameter estimates (ASYCOV option in the PROC GLIMMIX
statement). The standard errors reported in the “Covariance Parameter Estimates” table are based on the
diagonal entries of this partition.

If you request an empirical standard error matrix with the EMPIRICAL option in the PROC GLIMMIX
statement, a likelihood-based sandwich estimator is computed based on the subject-specific gradients of the
Laplace or quadrature approximation. The sandwich estimator then replaces H�1 in calculations following
convergence.

To compute the standard errors and prediction standard errors of linear combinations of ˇ and 
 , PROC
GLIMMIX forms an approximate prediction variance matrix for Œb̌;b
�0 from

P D

24 H�1 H�1
�

@b

@Œˇ;��

�
�

@b

@Œˇ0;� 0�

�
H�1 ��1 C

�
@b


@Œˇ0;� 0�

�
H�1

�
@b


@Œˇ;��

�
35

where � is the second derivative matrix from the 
 suboptimization that maximizes f .y;ˇ;�I
/ for given
values of ˇ and � . The prediction variance submatrix for the random effects is based on approximating
the conditional mean squared error of prediction as in Booth and Hobert (1998). Note that even in the
normal linear mixed model, the approximate conditional prediction standard errors are not identical to the
prediction standard errors you obtain by inversion of the mixed model equations.
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Conditional Fit and Output Statistics
When you estimate the parameters of a mixed model by Laplace approximation or quadrature, the GLIM-
MIX procedure displays fit statistics related to the marginal distribution as well as the conditional distribu-
tion p.yjb
; b̌;b�/. For ODS purposes, the name of the “Conditional Fit Statistics” table is “CondFitStatis-
tics.” Because the marginal likelihood is approximated numerically for these methods, statistics based on
the marginal distribution are not available. Instead of the generalized Pearson chi-square statistic in the
“Fit Statistics” table, PROC GLIMMIX reports the Pearson statistic of the conditional distribution in the
“Conditional Fit Statistics” table.

The unavailability of the marginal distribution also affects the set of output statistics that can be produced
with METHOD=LAPLACE and METHOD=QUAD. Output statistics and statistical graphics that depend
on the marginal variance of the data are not available with these estimation methods.

User-Defined Variance Function
If you provide your own variance function, PROC GLIMMIX generally assumes that the (conditional)
distribution of the data is unknown. Laplace or quadrature estimation would then not be possible. When
you specify a variance function with METHOD=LAPLACE or METHOD=QUAD, the procedure assumes
that the conditional distribution is normal. For example, consider the following statements to fit a mixed
model to count data:

proc glimmix method=laplace;
class sub;
_variance_ = _phi_*_mu_;
model count = x / s link=log;
random int / sub=sub;

run;

The variance function and the link suggest an overdispersed Poisson model. The Poisson distribution cannot
accommodate the extra scale parameter _PHI_, however. In this situation, the GLIMMIX procedure fits a
mixed model with random intercepts, log link function, and variance function ��, assuming that the count
variable is normally distributed, given the random effects.

Starting Values
Good starting values for the fixed effects and covariance parameters are important for Laplace and quadra-
ture methods because the process commences with a suboptimization in which the empirical Bayes estimates
of the random effects must be obtained before the optimization can get under way. Furthermore, the starting
values are important for the adaptive choice of the number of quadrature points.

If you choose METHOD=LAPLACE or METHOD=QUAD and you do not provide starting values for the
covariance parameters through the PARMS statement, the GLIMMIX procedure determines starting values
in the following steps.

1. A GLM is fit initially to obtain starting values for the fixed-effects parameters. No output is produced
from this stage. The number of initial iterations of this GLM fit can be controlled with the INITITER=
option in the PROC GLIMMIX statement. You can suppress this step with the NOINITGLM option
in the PROC GLIMMIX statement.

2. Given the fixed-effects estimates, starting values for the covariance parameters are computed by a
MIVQUE0 step (Goodnight 1978a).
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3. For METHOD=QUAD you can follow these steps with several pseudo-likelihood updates to improve
on the estimates and to obtain solutions for the random effects. The number of pseudo-likelihood
steps is controlled by the INITPL= suboption of METHOD=QUAD.

4. For METHOD=QUAD, if you do not specify the number of quadrature points with the suboptions of
the METHOD option, the GLIMMIX procedure attempts to determine a sufficient number of points
adaptively as follows. Suppose that Nq denotes the number of nodes in each dimension. If Nmin
and Nmax denote the values from the QMIN= and QMAX= suboptions, respectively, the sequence
for values less than 11 is constructed in increments of 2 starting at Nmin . Values greater than 11 are
incremented in steps of r. The default value is r = 10. The default sequence, without specifying the
QMIN=, QMAX=, or QFAC= option, is thus 1; 3; 5; 7; 9; 11; 21; 31. If the relative difference of the
log-likelihood approximation for two values in the sequence is less than the QTOL=t value (default t =
0.0001), the GLIMMIX procedure uses the lesser value for Nq in the subsequent optimization. If the
relative difference does not fall below the tolerance t for any two subsequent values in the sequence,
no estimation takes place.

Notes on Bias of Estimators

Generalized linear mixed models are nonlinear models, and the estimation techniques rely on approxima-
tions to the log likelihood or approximations of the model. It is thus not surprising that the estimates of
the covariance parameters and the fixed effects are usually not unbiased. Whenever estimates are biased,
questions arise about the magnitude of the bias, its dependence on other model quantities, and the order of
the bias. The order is important because it determines how quickly the bias vanishes while some aspect of
the data increases. Typically, studies of asymptotic properties in models for hierarchical data suppose that
the number of subjects (clusters) tends to infinity while the size of the clusters is held constant or grows
at a particular rate. Note that asymptotic results so established do not extend to designs with fully crossed
random effects, for example.

The following paragraphs summarize some important findings from the literature regarding the bias in co-
variance parameter and fixed-effects estimates with pseudo-likelihood, Laplace, and adaptive quadrature
methods. The remarks draw in particular on results in Breslow and Lin (1995); Lin and Breslow (1996);
Pinheiro and Chao (2006). Breslow and Lin (1995); Lin and Breslow (1996) study the “worst case” sce-
nario of binary responses in a matched-pairs design. Their models have a variance component structure,
comprising either a single variance component (a subject-specific random intercept; Breslow and Lin 1995)
or a diagonal G matrix (Lin and Breslow 1996). They study the bias in the estimates of the fixed-effects ˇ
and the covariance parameters � when the variance components are near the origin and for a canonical link
function.

The matched-pairs design gives rise to a generalized linear mixed model with a cluster (subject) size of 2.
Recall that the pseudo-likelihood methods rely on a linearization and a probabilistic assumption that the
pseudo-data so obtained follow a normal linear mixed model. Obviously, it is difficult to imagine how the
subject-specific (conditional) distribution would follow a normal linear mixed models with binary data in a
cluster size of 2. The bias in the pseudo-likelihood estimator of ˇ is of order jj�jj. The bias for the Laplace
estimator of ˇ is of smaller magnitude; its asymptotic bias has order jj�jj2.

The Laplace methods and the pseudo-likelihood method produce biased estimators of the variance com-
ponent � for the model considered in Breslow and Lin (1995). The order of the asymptotic bias for both
estimation methods is � , as � approaches zero. Breslow and Lin (1995) comment on the fact that even with
matched pairs, the bias vanishes very quickly in the binomial setting. If the conditional mean in the two
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groups is equal to 0.5, then the asymptotic bias factor of the pseudo-likelihood estimator is 1 � 1=.2n/,
where n is the binomial denominator. This term goes to 1 quickly as n increases. This result underlines the
importance of grouping binary observations into binomial responses whenever possible.

The results of Breslow and Lin (1995) and Lin and Breslow (1996) are echoed in the simulation study in
Pinheiro and Chao (2006). These authors also consider adaptive quadrature in models with nested, hierar-
chical, random effects and show that adaptive quadrature with a sufficient number of nodes leads to nearly
unbiased—or least biased—estimates. Their results also show that results for binary data cannot so eas-
ily be ported to other distributions. Even with a cluster size of 2, the pseudo-likelihood estimates of fixed
effects and covariance parameters are virtually unbiased in their simulation of a Poisson GLMM. Breslow
and Lin (1995) and Lin and Breslow (1996) “eschew” the residual PL version (METHOD=RSPL) over the
maximum likelihood form (METHOD=MSPL). Pinheiro and Chao (2006) consider both forms in their sim-
ulation study. As expected, the residual form shows less bias than the MSPL form, for the same reasons
REML estimation leads to less biased estimates compared to ML estimation in linear mixed models. The
gain is modest, however; see, for example, Table 1 in Pinheiro and Chao (2006). When the variance compo-
nents are small, there is a sufficient number of observations per cluster, and a reasonable number of clusters,
then pseudo-likelihood methods for binary data are very useful—they provide a computational expedient
alternative to numerical integration, and they allow the incorporation of R-side covariance structure into
the model. Because many group randomized trials involve many observations per group and small random
effects variances, Murray, Varnell, and Blitstein (2004) term questioning the use of conditional models for
trials with binary outcome an “overreaction.”

GLM Mode or GLMM Mode
The GLIMMIX procedure knows two basic modes of parameter estimation, and it can be important for you
to understand the differences between the two modes.

In GLM mode, the data are never correlated and there can be no G-side random effects. Typical examples
are logistic regression and normal linear models. When you fit a model in GLM mode, the METHOD=
option in the PROC GLIMMIX statement has no effect. PROC GLIMMIX estimates the parameters of
the model by maximum likelihood, (restricted) maximum likelihood, or quasi-likelihood, depending on the
distributional properties of the model (see the section “Default Estimation Techniques” on page 3106). The
“Model Information” table tells you which estimation method was applied. In GLM mode, the individual
observations are considered the sampling units. This has bearing, for example, on how sandwich estimators
are computed (see the EMPIRICAL option and the section “Empirical Covariance (“Sandwich”) Estima-
tors” on page 3078).

In GLMM mode, the procedure assumes that the model contains random effects or possibly correlated
errors, or that the data have a clustered structure. The parameters are then estimated by the techniques
specified with the METHOD= option in the PROC GLIMMIX statement.

In general, adding one overdispersion parameter to a generalized linear model does not trigger the GLMM
mode. For example, the model defined by the following statements is fit in GLM mode:

proc glimmix;
model y = x1 x2 / dist=poisson;
random _residual_;

run;
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The parameters of the fixed effects are estimated by maximum likelihood, and the covariance matrix of the
fixed-effects parameters is adjusted by the overdispersion parameter.

In a model with uncorrelated data you can trigger the GLMM mode by specifying a SUBJECT= or GROUP=
effect in the RANDOM statement. For example, the following statements fit the model by using the residual
pseudo-likelihood algorithm:

proc glimmix;
class id;
model y = x1 x2 / dist=poisson;
random _residual_ / subject=id;

run;

If in doubt, you can determine whether a model was fit in GLM mode or GLMM mode. In GLM mode
the “Covariance Parameter Estimates” table is not produced. Scale and dispersion parameters in the model
appear in the “Parameter Estimates” table.

Statistical Inference for Covariance Parameters

The Likelihood Ratio Test

The likelihood ratio test (LRT) compares the likelihoods of two models where parameter estimates are
obtained in two parameter spaces, the space� and the restricted subspace�0. In the GLIMMIX procedure,
the full model defines� and the test-specification in the COVTEST statement determines the null parameter
space �0. The likelihood ratio procedure consists of the following steps (see, for example, Bickel and
Doksum 1977, p. 210):

1. Find the estimateb� of � 2 �. Compute the likelihood L.b�/.
2. Find the estimateb�0 of � 2 �0. Compute the likelihood L.b�0/.
3. Form the likelihood ratio

� D
L.b�/
L.b�0/

4. Find a function f
�
�
�

that has a known distribution. f .�/ serves as the test statistic for the likelihood
ratio test.

Please note the following regarding the implementation of these steps in the COVTEST statement of the
GLIMMIX procedure.

� The function f .�/ in step 4 is always taken to be

� D 2 log
n
�
o

which is twice the difference between the log likelihoods for the full model and the model under the
COVTEST restriction.
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� For METHOD=RSPL and METHOD=RMPL, the test statistic is based on the restricted likelihood.

� For GLMMs involving pseudo-data, the test statistics are based on the pseudo-likelihood or the re-
stricted pseudo-likelihood and are based on the final pseudo-data.

� The parameter space � for the full model is typically not an unrestricted space. The GLIMMIX
procedure imposes boundary constraints for variance components and scale parameters, for example.
The specification of the subspace �0 must be consistent with these full-model constraints; otherwise
the test statistic � does not have the needed distribution. You can remove the boundary restrictions
with the NOBOUND option in the PROC GLIMMIX statement or the NOBOUND option in the
PARMS statement.

One- and Two-Sided Testing, Mixture Distributions

Consider testing the hypothesis H0W �i D 0. If � is the open interval .0;1/, then only a one-sided alterna-
tive hypothesis is meaningful,

H0W �i D 0 HaW �i > 0

This is the appropriate set of hypotheses, for example, when �i is the variance of a G-side random effect. The
positivity constraint on � is required for valid conditional and marginal distributions of the data. Verbeke
and Molenberghs (2003) refer to this situation as the constrained case.

However, if one focuses on the validity of the marginal distribution alone, then negative values for �i might
be permissible, provided that the marginal variance remains positive definite. In the vernacular or Verbeke
and Molenberghs (2003), this is the unconstrained case. The appropriate alternative hypothesis is then
two-sided,

H0W �i D 0 HaW �i 6D 0

Several important issues are connected to the choice of hypotheses. The GLIMMIX procedure by default
imposes constraints on some covariance parameters. For example, variances and scale parameters have
a lower bound of 0. This implies a constrained setting with one-sided alternatives. If you specify the
NOBOUND option in the PROC GLIMMIX statement, or the NOBOUND option in the PARMS statement,
the boundary restrictions are lifted from the covariance parameters and the GLIMMIX procedure takes
an unconstrained stance in the sense of Verbeke and Molenberghs (2003). The alternative hypotheses for
variance components are then two-sided.

When H0W �i D 0 and � D .0;1/, the value of �i under the null hypothesis is on the boundary of the
parameter space. The distribution of the likelihood ratio test statistic � is then nonstandard. In general, it
is a mixture of distributions, and in certain special cases, it is a mixture of central chi-square distributions.
Important contributions to the understanding of the asymptotic behavior of the likelihood ratio and score test
statistic in this situation have been made by, for example, Self and Liang (1987); Shapiro (1988); Silvapulle
and Silvapulle (1995). Stram and Lee (1994, 1995) applied the results of Self and Liang (1987) to likelihood
ratio testing in the mixed model with uncorrelated errors. Verbeke and Molenberghs (2003) compared the
score and likelihood ratio tests in random effects models with unstructured G matrix and provide further
results on mixture distributions.

The GLIMMIX procedure recognizes the following special cases in the computation of p-values (b� denotes
the realized value of the test statistic). Notice that the probabilities of general chi-square mixture distribu-
tions do not equal linear combination of central chi-square probabilities (Davis 1977; Johnson, Kotz, and
Balakrishnan 1994, Section 18.8).
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1. � parameters are tested, and neither parameters specified under H0 nor nuisance parameters are on
the boundary of the parameters space (Case 4 in Self and Liang 1987). The p-value is computed by
the classical result:

p D Pr
�
�2� �

b��
2. One parameter is specified under H0 and it falls on the boundary. No other parameters are on the

boundary (Case 5 in Self and Liang 1987).

p D

(
1 b� D 0
0:5Pr

�
�21 �

b�� b� > 0
Note that this implies a 50:50 mixture of a �20 and a �21 distribution. This is also Case 1 in Verbeke
and Molenberghs (2000, p. 69).

3. Two parameters are specified under H0, and one falls on the boundary. No nuisance parameters are
on the boundary (Case 6 in Self and Liang 1987).

p D 0:5Pr
�
�21 �

b��C 0:5Pr
�
�22 �

b��
A special case of this scenario is the addition of a random effect to a model with a single random
effect and unstructured covariance matrix (Case 2 in Verbeke and Molenberghs 2000, p. 70).

4. Removing j random effects from jCk uncorrelated random effects (Verbeke and Molenberghs 2003).

p D 2�j
jX
iD0

�
j

i

�
Pr
�
�2i �

b��
Note that this case includes the case of testing a single random effects variance against zero, which
leads to a 50:50 mixture of a �20 and a �21 as in 2.

5. Removing a random effect from an unstructured G matrix (Case 3 in Verbeke and Molenberghs 2000,
p. 71).

p D 0:5Pr
�
�2k �

b��C 0:5Pr
�
�2k�1 �

b��
where k is the number of random effects (columns of G) in the full model. Case 5 in Self and Liang
(1987) describes a special case.

When the GLIMMIX procedure determines that estimates of nuisance parameters (parameters not specified
under H0) fall on the boundary, no mixture results are computed.

You can request that the procedure not use mixtures with the CLASSICAL option in the COVTEST state-
ment. If mixtures are used, the Note column of the “Likelihood Ratio Tests of Covariance Parameters” table
contains the “MI” entry. The “DF” entry is used when PROC GLIMMIX determines that the standard com-
putation of p-values is appropriate. The “–” entry is used when the classical computation was used because
the testing and model scenario does not match one of the special cases described previously.
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Handling the Degenerate Distribution

Likelihood ratio testing in mixed models invariably involves the chi-square distribution with zero degrees
of freedom. The �20 random variable is degenerate at 0, and it occurs in two important circumstances. First,
it is a component of mixtures, where typically the value of the test statistic is not zero. In that case, the
contribution of the �20 component of the mixture to the p-value is nil. Second, a degenerate distribution
of the test statistic occurs when the null model is identical to the full model—for example, if you test a
hypothesis that does not impose any (new) constraints on the parameter space. The following statements
test whether the R matrix in a variance component model is diagonal:

proc glimmix;
class a b;
model y = a;
random b a*b;
covtest diagR;

run;

Because no R-side covariance structure is specified (all random effects are G-side effects), the R matrix
is diagonal in the full model and the COVTEST statement does not impose any further restriction on the
parameter space. The likelihood ratio test statistic is zero. The GLIMMIX procedure computes the p-value
as the probability to observe a value at least as large as the test statistic under the null hypothesis. Hence,

p D Pr.�20 � 0/ D 1

Wald Versus Likelihood Ratio Tests

The Wald test and the likelihood ratio tests are asymptotic tests, meaning that the distribution from which
p-values are calculated for a finite number of samples draws on the distribution of the test statistic as the
sample size grows to infinity. The Wald test is a simple test that is easy to compute based only on parameter
estimates and their (asymptotic) standard errors. The likelihood ratio test, on the other hand, requires the
likelihoods of the full model and the model reduced under H0. It is computationally more demanding, but
also provides the asymptotically more powerful and reliable test. The likelihood ratio test is almost always
preferable to the Wald test, unless computational demands make it impractical to refit the model.

Confidence Bounds Based on Likelihoods

Families of statistical tests can be inverted to produce confidence limits for parameters. The confidence
region for parameter � is the set of values for which the corresponding test fails to reject H W � D �0. When
parameters are estimated by maximum likelihood or a likelihood-based technique, it is natural to consider
the likelihood ratio test statistic for H in the test inversion. When there are multiple parameters in the model,
however, you need to supply values for these nuisance parameters during the test inversion as well.

In the following, suppose that � is the covariance parameter vector and that one of its elements, � , is
the parameter of interest for which you want to construct a confidence interval. The other elements of
� are collected in the nuisance parameter vector �2. Suppose that b� is the estimate of � from the overall
optimization and thatL.b�/ is the likelihood evaluated at that estimate. If estimation is based on pseudo-data,
then L.b�/ is the pseudo-likelihood based on the final pseudo-data. If estimation uses a residual (restricted)
likelihood, then L denotes the restricted maximum likelihood andb� is the REML estimate.
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Profile Likelihood Bounds
The likelihood ratio test statistic for testing H W � D �0 is

2
n
log

n
L.b�/o � log

n
L.�0;b�2/oo

where b�2 is the likelihood estimate of �2 under the restriction that � D �0. To invert this test, a function
is defined that returns the maximum likelihood for a fixed value of � by seeking the maximum over the
remaining parameters. This function is termed the profile likelihood (Pawitan 2001, Ch. 3.4),

�p D L.�2je�/ D sup
�2

L.e�;�2/
In computing �p, � is fixed ate� and �2 is estimated. In mixed models, this step typically requires a separate,
iterative optimization to find the estimate of �2 while � is held fixed. The .1� ˛/� 100% profile likelihood
confidence interval for � is then defined as the set of values fore� that satisfy

2
n
log

n
L.b�/o � log

n
L.�2je�/oo � �21;.1�˛/

The GLIMMIX procedure seeks the valuese� l ande�u that mark the endpoints of the set aroundb� that satisfy
the inequality. The values .e� l ande�u/ are then called the .1 � ˛/ � 100% confidence bounds for � . Note
that the GLIMMIX procedure assumes that the confidence region is not disjoint and relies on the convexity
of L.b�/.
It is not always possible to find values e� l and e�u that satisfy the inequalities. For example, when the
parameter space is (0;1/ and

2
n
log

n
L.b�/o � log fL.�2j0/g

o
> �21;.1�˛/

a lower bound cannot be found at the desired confidence level. The GLIMMIX procedure reports the right-
tail probabilities that are achieved by the underlying likelihood ratio statistic separately for lower and upper
bounds.

Effect of Scale Parameter
When a scale parameter � is eliminated from the optimization by profiling from the likelihood, some pa-
rameters might be expressed as ratios with � in the optimization. This is the case, for example, in variance
component models. The profile likelihood confidence bounds are reported on the scale of the parameter in
the overall optimization. In case parameters are expressed as ratios with � or functions of �, the column
RatioEstimate is added to the “Covariance Parameter Estimates” table. If parameters are expressed as ratios
with � and you want confidence bounds for the unscaled parameter, you can prevent profiling of � from the
optimization with the NOPROFILE option in the PROC GLIMMIX statement, or choose estimated likeli-
hood confidence bounds with the TYPE=ELR suboption of the CL option in the COVTEST statement. Note
that the NOPROFILE option is automatically in effect with METHOD=LAPLACE and METHOD=QUAD.

Estimated Likelihood Bounds
Computing profile likelihood ratio confidence bounds can be computationally expensive, because of the
need to repeatedly estimate �2 in a constrained optimization. A computationally simpler method to construct
confidence bounds from likelihood-based quantities is to use the estimated likelihood (Pawitan 2001, Ch.
10.7) instead of the profile likelihood. An estimated likelihood technique replaces the nuisance parameters
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in the test inversion with some other estimate. If you choose the TYPE=ELR suboption of the CL option
in the COVTEST statement, the GLIMMIX procedure holds the nuisance parameters fixed at the likelihood
estimates. The estimated likelihood statistic for inversion is then

�e D L.e�;b�2/
whereb�2 are the elements ofb� that correspond to the nuisance parameters. As the values ofe� are varied, no
reestimation of �2 takes place. Although computationally more economical, estimated likelihood intervals
do not take into account the variability associated with the nuisance parameters. Their coverage can be
satisfactory if the parameter of interest is not (or only weakly) correlated with the nuisance parameters.
Estimated likelihood ratio intervals can fall short of the nominal coverage otherwise.

Figure 41.11 depicts profile and estimated likelihood ratio intervals for the parameter � in a two-parameter
compound-symmetric model, � D Œ�; ��0, in which the correlation between the covariance parameters is
small. The elliptical shape traces the set of values for which the likelihood ratio test rejects the hypothesis
of equality with the solution. The interior of the ellipse is the “acceptance” region of the test. The solid and
dashed lines depict the PLR and ELR confidence limits for � , respectively. Note that both confidence limits
intersect the ellipse and that the ELR interval passes through the REML estimate of �. The PLR bounds are
found as those points intersecting the ellipse, where � equals the constrained REML estimate.

Figure 41.11 PLR and ELR Intervals, Small Correlation between Parameters
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The major axes of the ellipse in Figure 41.11 are nearly aligned with the major axes of the coordinate system.
As a consequence, the line connecting the PLR bounds passes close to the REML estimate in the full model.
As a result, ELR bounds will be similar to PLR bounds. Figure 41.12 displays a different scenario, a two-
parameter AR(1) covariance structure with a more substantial correlation between the AR(1) parameter (�)
and the residual variance (�).

Figure 41.12 PLR and ELR Intervals, Large Correlation between Parameters

The correlation between the parameters yields an acceptance region whose major axes are not aligned with
the axes of the coordinate system. The ELR bound for � passes through the REML estimate of � from the
full model and is much shorter than the PLR interval. The PLR interval aligns with the major axis of the
acceptance region; it is the preferred confidence interval.
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Degrees of Freedom Methods

Between-Within Degrees of Freedom Approximation

The DDFM=BETWITHIN option divides the residual degrees of freedom into between-subject and within-
subject portions. PROC GLIMMIX then determines whether a fixed effect changes within any subject. If so,
it assigns within-subject degrees of freedom to the effect; otherwise, it assigns the between-subject degrees
of freedom to the effect (Schluchter and Elashoff 1990). If the GLIMMIX procedure does not process the
data by subjects, the DDFM=BETWITHIN option has no effect. See the section “Processing by Subjects”
on page 3082 for more information.

If multiple within-subject effects contain classification variables, the within-subject degrees of freedom are
partitioned into components that correspond to the subject-by-effect interactions.

One exception to the preceding method is the case where you model only R-side covariation with an unstruc-
tured covariance matrix (TYPE=UN). In this case, all fixed effects are assigned the between-subject degrees
of freedom to provide for better small-sample approximations to the relevant sampling distributions. The
DDFM=BETWITHIN method is the default for models with only R-side random effects and a SUBJECT=
option.

Containment Degrees of Freedom Approximation

The DDFM=CONTAIN method is carried out as follows: Denote the fixed effect in question as A and
search the G-side random effect list for the effects that syntactically contain A. For example, the effect B(A)
contains A, but the effect C does not, even if it has the same levels as B(A).

Among the random effects that contain A, compute their rank contributions to the ŒX Z� matrix (in order).
The denominator degrees of freedom that is assigned to A is the smallest of these rank contributions. If no
effects are found, the denominator degrees of freedom for A is set equal to the residual degrees of freedom,
n � rankŒX Z�. This choice of degrees of freedom is the same as for the tests performed for balanced
split-plot designs and should be adequate for moderately unbalanced designs.

NOTE: If you have a Z matrix with a large number of columns, the overall memory requirements and
the computing time after convergence can be substantial for the containment method. In this case, you
might want to use a different degrees-of-freedom method, such as DDFM=RESIDUAL, DDFM=NONE, or
DDFM=BETWITHIN.

Satterthwaite Degrees of Freedom Approximation

The DDFM=SATTERTHWAITE option in the MODEL statement requests that denominator degrees of
freedom in t tests and F tests be computed according to a general Satterthwaite approximation.

The general Satterthwaite approximation computed in PROC GLIMMIX for the test

H WL
� b̌b


�
D 0

is based on the F statistic

F D

� b̌b

�0

L0.LCL0/�1L
� b̌b


�
r
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where r D rank.LCL0/ and C is the approximate variance matrix of Œb̌0;b
 0 � 
 0�0. See the section “Esti-
mated Precision of Estimates” on page 3056 and the section “Aspects Common to Adaptive Quadrature and
Laplace Approximation” on page 3064.

The approximation proceeds by first performing the spectral decomposition LCL0 D U0DU, where U is
an orthogonal matrix of eigenvectors and D is a diagonal matrix of eigenvalues, both of dimension r � r .
Define bj to be the jth row of UL, and let

�j D
2.Dj /

2

g0jAgj

where Dj is the jth diagonal element of D and gj is the gradient of bjCb0j with respect to � , evaluated

at b� . The matrix A is the asymptotic variance-covariance matrix of b� , which is obtained from the second
derivative matrix of the likelihood equations. You can display this matrix with the ASYCOV option in the
PROC GLIMMIX statement.

Finally, let

E D

rX
jD1

�j

�j � 2
I.�j > 2/

where the indicator function eliminates terms for which �j � 2. The degrees of freedom for F are then
computed as

� D
2E

E � rank.L/

provided E > r; otherwise � is set to 0.

In the one-dimensional case, when PROC GLIMMIX computes a t test, the Satterthwaite degrees of freedom
for the t statistic

t D

l0
� b̌b


�
l0Cl

are computed as

� D
2.l0Cl/2

g0Ag

where g is the gradient of l0Cl with respect to � , evaluated atb� .

The calculation of Satterthwaite degrees of freedom requires extra memory to hold q matrices that are the
size of the mixed model equations, where q is the number of covariance parameters. Extra computing time
is also required to process these matrices. The implemented Satterthwaite method is intended to produce an
accurate F approximation; however, the results can differ from those produced by PROC GLM. Also, the
small-sample properties of this approximation have not been extensively investigated for the various models
available with PROC GLIMMIX.
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Kenward-Roger Degrees of Freedom Approximation

The DDFM=KENWARDROGER option prompts PROC GLIMMIX to compute the denominator degrees
of freedom in t tests and F tests by using the approximation described in Kenward and Roger (1997). For
inference on the linear combination Lˇ in a Gaussian linear model, they propose a scaled Wald statistic

F � D �F

D
�

l
. Ǒ � ˇ/TL.LT Ô AL/

�1LT . Ǒ � ˇ/;

where l D rank.L/, Ô A is a bias-adjusted estimator of the precision of Ǒ, and 0 < � < 1. An appropriate
Fl;m approximation to the sampling distribution of F � is derived by matching the first two moments of F �

with those from the approximating F distribution and solving for the values of � and m. The value of m thus
derived is the Kenward-Roger degrees of freedom. The precision estimator Ô A is bias-adjusted, in contrast
to the conventional precision estimator ˆ. O�/ D .X 0V. O�/�1X/�1, which is obtained by simply replacing �
with O� inˆ.�/, the asymptotic variance of Ǒ. This method uses Ô A to address the fact thatˆ. O�/ is a biased
estimator of ˆ.�/, and ˆ.�/ itself underestimates var. Ǒ/ when � is unknown. This bias-adjusted precision
estimator is also discussed in Prasad and Rao (1990); Harville and Jeske (1992); Kackar and Harville (1984).

By default, the observed information matrix of the covariance parameter estimates is used in the calculations.
For covariance structures that have nonzero second derivatives with respect to the covariance parameters, the
Kenward-Roger covariance matrix adjustment includes a second-order term. This term can result in standard
error shrinkage. Also, the resulting adjusted covariance matrix can then be indefinite and is not invariant
under reparameterization. The FIRSTORDER suboption of the DDFM=KENWARDROGER option elimi-
nates the second derivatives from the calculation of the covariance matrix adjustment. For scalar estimable
functions, the resulting estimator is referred to as the Prasad-Rao estimator em@ in Harville and Jeske (1992).
You can use the COVB(DETAILS) option to diagnose the adjustments that PROC GLIMMIX makes to the
covariance matrix of fixed-effects parameter estimates. An application with DDFM=KENWARDROGER
is presented in Example 41.8. The following are examples of covariance structures that generally lead
to nonzero second derivatives: TYPE=ANTE(1), TYPE=AR(1), TYPE=ARH(1), TYPE=ARMA(1,1),
TYPE=CHOL, TYPE=CSH, TYPE=FA0(q), TYPE=TOEPH, TYPE=UNR, and all TYPE=SP() structures.

DDFM=KENWARDROGER2 specifies an improved F approximation of the DDFM=KENWARD-ROGER
type that uses a less biased precision estimator, as proposed by Kenward and Roger (2009). An important
feature of the KR2 precision estimator is that it is invariant under reparameterization within the classes of
intrinsically linear and intrinsically linear inverse covariance structures. For the invariance to hold within
these two classes of covariance structures, a modified expected Hessian matrix is used in the computation
of the covariance matrix of � . The two cells classified as “Modified” scoring for RxPL estimation in Ta-
ble 41.21 give the modified Hessian expressions for the cases where the scale parameter is profiled and not
profiled. You can enforce the use of the modified expected Hessian matrix by specifying both the EXPHES-
SIAN and SCOREMOD options in the PROC GLIMMIX statement. Kenward and Roger (2009) note that
for an intrinsically linear covariance parameterization, DDFM=KR2 produces the same precision estimator
as that obtained using DDFM=KR(FIRSTORDER).
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Empirical Covariance (“Sandwich”) Estimators

Residual-Based Estimators

The GLIMMIX procedure can compute the classical sandwich estimator of the covariance matrix of the
fixed effects, as well as several bias-adjusted estimators. This requires that the model is either an (overdis-
persed) GLM or a GLMM that can be processed by subjects (see the section “Processing by Subjects” on
page 3082).

Consider a statistical model of the form

Y D �C �; � � .0;†/

The general expression of a sandwich covariance estimator is then

c � b� mX
iD1

AibD0ib†�1i F0ieie
0
iFib†�1i bDiAi! b�

where ei D yi �b�i ,� D .D0†�1D/�.

For a GLMM estimated by one of the pseudo-likelihood techniques that involve linearization, you can make
the following substitutions: Y ! P, † ! V.�/, D ! X, b� ! Xb̌. These matrices are defined in the
section “Pseudo-likelihood Estimation Based on Linearization” on page 3054.

The various estimators computed by the GLIMMIX procedure differ in the choice of the constant c and the
matrices Fi and Ai . You obtain the classical estimator, for example, with c = 1, and Fi D Ai equal to the
identity matrix.

The EMPIRICAL=ROOT estimator of Kauermann and Carroll (2001) is based on the approximation

Var
�
eie0i

�
� .I �Hi /†i

where Hi D Di�D0i†
�1
i . The EMPIRICAL=FIRORES estimator is based on the approximation

Var
�
eie0i

�
� .I �Hi /†i .I �H0i /

of Mancl and DeRouen (2001). Finally, the EMPIRICAL=FIROEEQ estimator is based on approximating
an unbiased estimating equation (Fay and Graubard 2001). For this estimator, Ai is a diagonal matrix with
entries

ŒAi �jj D
�
1 �minfr; ŒQ�jj g

��1=2
where Q D D0ib†�1i Dib�. The optional number 0 � r < 1 is chosen to provide an upper bound on the
correction factor. For r = 0, the classical sandwich estimator results. PROC GLIMMIX chooses as default
value r D 3=4. The diagonal entries of Ai are then no greater than 2.

Table 41.22 summarizes the components of the computation for the GLMM based on linearization, where
m denotes the number of subjects and k is the rank of X.
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Table 41.22 Empirical Covariance Estimators for a Linearized GLMM

EMPIRICAL= c Ai Fi

CLASSICAL 1 I I

DF
�

m
m�k

m > k

1 otherwise I I

ROOT 1 I .I �H0i /
�1=2

FIRORES 1 I .I �H0i /
�1

FIROEEQ(r) 1 Diagf.1 �minfr; ŒQ�jj g/�1=2g I

Computation of an empirical variance estimator requires that the data can be processed by independent
sampling units. This is always the case in GLMs. In this case, m equals the sum of all frequencies. In
GLMMs, the empirical estimators require that the data consist of multiple subjects. In that case, m equals
the number of subjects as per the “Dimensions” table. The following section discusses how the GLIMMIX
procedure determines whether the data can be processed by subjects. The section “GLM Mode or GLMM
Mode” on page 3067 explains how PROC GLIMMIX determines whether a model is fit in GLM mode or in
GLMM mode.

Design-Adjusted MBN Estimator

Morel (1989) and Morel, Bokossa, and Neerchal (2003) suggested a bias correction of the classical sandwich
estimator that rests on an additive correction of the residual crossproducts and a sample size correction.
This estimator is available with the EMPIRICAL=MBN option in the PROC GLIMMIX statement. In the
notation of the previous section, the residual-based MBN estimator can be written as

b� mX
iD1

bD0ib†�1i �
ceie0i C Bi

� b†�1i bDi! b�
where

� c D .f �1/=.f �k/�m=.m�1/ or c = 1 when you specify the EMPIRICAL=MBN(NODF) option

� f is the sum of the frequencies

� k equals the rank of X

� Bi D ım�b†i
� � D max

n
r; trace

�b�M
�
=k�

o
� M D

Pm
iD1

bD0ib†�1i eie0ib†�1i bDi
� k� D k if m � k, otherwise k� equals the number of nonzero singular values of b�M

� ım D k=.m � k/ if m > .d C 1/k and ım D 1=d otherwise

� d � 1 and 0 � r � 1 are parameters supplied with the mbn-options of the EMPIRICAL=MBN(mbn-
options) option. The default values are d = 2 and r = 1. When the NODF option is in effect, the factor
c is set to 1.
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Rearranging terms, the MBN estimator can also be written as an additive adjustment to a sample-size cor-
rected classical sandwich estimator

c � b� mX
iD1

bD0ib†�1i eie0ib†�1i bDi! b�C ım�b�
Because ım is of order m�1, the additive adjustment to the classical estimator vanishes as the number of
independent sampling units (subjects) increases. The parameter � is a measure of the design effect (Morel,
Bokossa, and Neerchal 2003). Besides good statistical properties in terms of Type I error rates in small-
m situations, the MBN estimator also has the desirable property of recovering rank when the number of
sampling units is small. If m < k, the “meat” piece of the classical sandwich estimator is essentially a sum
of rank one matrices. A small number of subjects relative to the rank of X can result in a loss of rank and
subsequent loss of numerator degrees of freedom in tests. The additive MBN adjustment counters the rank
exhaustion. You can examine the rank of an adjusted covariance matrix with the COVB(DETAILS) option
in the MODEL statement.

When the principle of the MBN estimator is applied to the likelihood-based empirical estimator, you obtain

H.b̨/�1  mX
iD1

cgi .b̨/gi .b̨/0 C Bi

!
H.b̨/�1

where Bi D �ım�Hi .b̨/, and Hi .b̨/ is the second derivative of the log likelihood for the ith sampling
unit (subject) evaluated at the vector of parameter estimates, b̨. Also, gi .b̨/ is the first derivative of the log
likelihood for the ith sampling unit. This estimator is computed if you request EMPIRICAL=MBN with
METHOD=LAPLACE or METHOD=QUAD.

In terms of adjusting the classical likelihood-based estimator (White 1982), the likelihood MBN estimator
can be written as

c �H.b̨/�1  mX
iD1

gi .b̨/gi .b̨/0!H.b̨/�1 � ım�H.b̨/�1
The parameter � is determined as

� � D max
˚
r; trace

�
�H.b̨/�1M

�
=k�

	
� M D

Pm
iD1 gi .b̨/gi .b̨/0

� k� D k if m � k, otherwise k� equals the number of nonzero singular values of �H.b̨/�1M

Exploring and Comparing Covariance Matrices
If you use an empirical (sandwich) estimator with the EMPIRICAL= option in the PROC GLIMMIX state-
ment, the procedure replaces the model-based estimator of the covariance of the fixed effects with the sand-
wich estimator. This affects aspects of inference, such as prediction standard errors, tests of fixed effects,
estimates, contrasts, and so forth. Similarly, if you choose the DDFM=KENWARDROGER degrees-of-
freedom method in the MODEL statement, PROC GLIMMIX adjusts the model-based covariance matrix
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of the fixed effects according to Kenward and Roger (1997) or according to Kackar and Harville (1984) and
Harville and Jeske (1992).

In this situation, the COVB(DETAILS) option in the MODEL statement has two effects. The GLIMMIX
procedure displays the (adjusted) covariance matrix of the fixed effects and the model-based covariance
matrix (the ODS name of the table with the model-based covariance matrix is CovBModelBased). The
procedure also displays a table of statistics for the unadjusted and adjusted covariance matrix and for their
comparison. The ODS name of this table is CovBDetails.

If the model-based covariance matrix is not replaced with an adjusted estimator, the COVB(DETAILS)
option displays the model-based covariance matrix and provides diagnostic measures for it in the “CovB-
Details” table.

The table generated by the COVB(DETAILS) option consists of several sections. See Example 41.8 for an
application.

The trace and log determinant of covariance matrices are general scalar summaries that are sometimes used
in direct comparisons, or in formulating other statistics, such as the difference of log determinants. The
trace simply represents the sum of the variances of all fixed-effects parameters. If a matrix is indefinite, the
determinant is reported instead of the log determinant.

The model-based and adjusted covariance matrices should have the same general makeup of eigenvalues.
There should not be any negative eigenvalues, and they should have the same numbers of positive and zero
eigenvalues. A reduction in rank due to the adjustment is troublesome for aspects of inference. Negative
eigenvalues are listed in the table only if they occur, because a covariance matrix should be at least posi-
tive semi-definite. However, the GLIMMIX procedure examines the model-based and adjusted covariance
matrix for negative eigenvalues. The condition numbers reported by PROC GLIMMIX for positive (semi-
)definite matrices are computed as the ratio of the largest and smallest nonzero eigenvalue. A large condition
number reflects poor conditioning of the matrix.

Matrix norms are extensions of the concept of vector norms to measure the “length” of a matrix. The
Frobenius norm of an .n � m/ matrix A is the direct equivalent of the Euclidean vector norm, the square
root of the sum of the squared elements,

jjAjjF D

vuut nX
iD1

nX
jD1

a2ij

The1- and 1-norms of matrix A are the maximum absolute row and column sums, respectively:

jjAjj1 D max

8<:
mX
jD1

jaij j W i D 1; � � � ; n

9=;
jjAjj1 D max

(
nX
iD1

jaij j W j D 1; � � � ; m

)

These two norms are identical for symmetric matrices.

The “Comparison” section of the “CovBDetails” table provides several statistics that set the matrices in
relationship. The concordance correlation reported by the GLIMMIX procedure is a standardized measure
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of the closeness of the model-based and adjusted covariance matrix. It is a slight modification of the covari-
ance concordance correlation in Vonesh, Chinchilli, and Pu (1996) and Vonesh and Chinchilli (1997, Ch.
8.3). Denote as� the .p � p/ model-based covariance matrix and as�a the adjusted matrix. Suppose that
K is the matrix obtained from the identity matrix of size p by replacing diagonal elements corresponding to
singular rows in�with zeros. The lower triangular portion of��1=2�a��1=2 is stored in vector! and the
lower triangular portion of K is stored in vector k. The matrix ��1=2 is constructed from an eigenanalysis
of� and is symmetric. The covariance concordance correlation is then

r.!/ D 1 �
jj! � kjj2

jj!jj2 C jjkjj2

This measure is 1 if � = �a. If ! is orthogonal to k, there is total disagreement between the model-based
and the adjusted covariance matrix and r.!/ is zero.

The discrepancy function reported by PROC GLIMMIX is computed as

d D logfj�jg � logfj�ajg C tracef�a��g � rankf�g

In diagnosing departures between an assumed covariance structure and VarŒY�—using an empirical
estimator—Vonesh, Chinchilli, and Pu (1996) find that the concordance correlation is useful in detecting
gross departures and propose � D nsd to test the correctness of the assumed model, where ns denotes the
number of subjects.

Processing by Subjects
Some mixed models can be expressed in different but mathematically equivalent ways with PROC GLIM-
MIX statements. While equivalent statements lead to equivalent statistical models, the data processing and
estimation phase can be quite different, depending on how you write the GLIMMIX statements. For ex-
ample, the particular use of the SUBJECT= option in the RANDOM statement affects data processing and
estimation. Certain options are available only when the data are processed by subject, such as the EMPIRI-
CAL option in the PROC GLIMMIX statement.

Consider a GLIMMIX model where variables A and Rep are classification variables with a and r levels,
respectively. The following pairs of statements produce the same random-effects structure:

class Rep A;
random Rep*A;

class Rep A;
random intercept / subject=Rep*A;

class Rep A;
random Rep / subject=A;

class Rep A;
random A / subject=Rep;

In the first case, PROC GLIMMIX does not process the data by subjects because no SUBJECT= option
was given. The computation of empirical covariance estimators, for example, will not be possible. The
marginal variance-covariance matrix has the same block-diagonal structure as for cases 2–4, where each
block consists of the observations belonging to a unique combination of Rep and A. More importantly, the
dimension of the Z matrix of this model will be n � ra, and Z will be sparse. In the second case, the Zi
matrix for each of the ra subjects is a vector of ones.
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If the data can be processed by subjects, the procedure typically executes faster and requires less memory.
The differences can be substantial, especially if the number of subjects is large. Recall that fitting of gen-
eralized linear mixed models might be doubly iterative. Small gains in efficiency for any one optimization
can produce large overall savings.

If you interpret the intercept as “1,” then a RANDOM statement with TYPE=VC (the default) and no
SUBJECT= option can be converted into a statement with subject by dividing the random effect by the
eventual subject effect. However, the presence of the SUBJECT= option does not imply processing by
subject. If a RANDOM statement does not have a SUBJECT= effect, processing by subjects is not possible
unless the random effect is a pure R-side overdispersion effect. In the following example, the data will not
be processed by subjects, because the first RANDOM statement specifies a G-side component and does not
use a SUBJECT= option:

proc glimmix;
class A B;
model y = B;
random A;
random B / subject=A;

run;

To allow processing by subjects, you can write the equivalent model with the following statements:

proc glimmix;
class A B;
model y = B;
random int / subject=A;
random B / subject=A;

run;

If you denote a variance component effect X with subject effect S as X–(S), then the “calculus of random ef-
fects” applied to the first RANDOM statement reads A = Int*A = Int–(A) = A–(Int). For the second statement
there are even more equivalent formulations: A*B = A*B*Int = A*B–(Int) = A–(B) = B–(A) = Int–(A*B).

If there are multiple subject effects, processing by subjects is possible if the effects are equal or contained
in each other. Note that in the last example the A*B interaction is a random effect. The following statements
give an equivalent specification to the previous model:

proc glimmix;
class A B;
model y = B;
random int / subject=A;
random A / subject=B;

run;

Processing by subjects is not possible in this case, because the two subject effects are not syntactically equal
or contained in each other. The following statements depict a case where subject effects are syntactically
contained:

proc glimmix;
class A B;
model y = B;
random int / subject=A;
random int / subject=A*B;

run;



3084 F Chapter 41: The GLIMMIX Procedure

The A main effect is contained in the A*B interaction. The GLIMMIX procedure chooses as the subject
effect for processing the effect that is contained in all other subject effects. In this case, the subjects are
defined by the levels of A.

You can examine the “Model Information” and “Dimensions” tables to see whether the GLIMMIX proce-
dure processes the data by subjects and which effect is used to define subjects. The “Model Information”
table displays whether the marginal variance matrix is diagonal (GLM models), blocked, or not blocked.
The “Dimensions” table tells you how many subjects (=blocks) there are.

Finally, nesting and crossing of interaction effects in subject effects are equivalent. The following two
RANDOM statements are equivalent:

class Rep A;
random intercept / subject=Rep*A;

class Rep A;
random intercept / subject=Rep(A);

Radial Smoothing Based on Mixed Models
The radial smoother implemented with the TYPE=RSMOOTH option in the RANDOM statement is an
approximate low-rank thin-plate spline as described in Ruppert, Wand, and Carroll (2003, Chapter 13.4–
13.5). The following sections discuss in more detail the mathematical-statistical connection between mixed
models and penalized splines and the determination of the number of spline knots and their location as
implemented in the GLIMMIX procedure.

From Penalized Splines to Mixed Models

The connection between splines and mixed models arises from the similarity of the penalized spline fitting
criterion to the minimization problem that yields the mixed model equations and solutions for ˇ and 
 .
This connection is made explicit in the following paragraphs. An important distinction between classical
spline fitting and its mixed model smoothing variant, however, lies in the nature of the spline coefficients.
Although they address similar minimization criteria, the solutions for the spline coefficients in the GLIM-
MIX procedure are the solutions of random effects, not fixed effects. Standard errors of predicted values,
for example, account for this source of variation.

Consider the linearized mixed pseudo-model from the section “The Pseudo-model” on page 3054, P D
Xˇ C Z
 C �. One derivation of the mixed model equations, whose solutions are b̌ andb
 , is to maximize
the joint density of f .
; �/ with respect to ˇ and 
 . This is not a true likelihood problem, because 
 is not
a parameter, but a random vector.

In the special case with VarŒ�� D �I and VarŒ
� D �2I, the maximization of f .
; �/ is equivalent to the
minimization of

Q.ˇ;
/ D ��1.p � Xˇ � Z
/0.p � Xˇ � Z
/C ��2
 0


Now consider a linear spline as in Ruppert, Wand, and Carroll (2003, p. 108),

pi D ˇ0 C ˇ1xi C

KX
jD1


j .xi � tj /C
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where the 
j denote the spline coefficients at knots t1; � � � ; tK . The truncated line function is defined as

.x � t /C D

�
x � t x > t

0 otherwise

If you collect the intercept and regressor x into the matrix X, and if you collect the truncated line functions
into the .n � K/ matrix Z, then fitting the linear spline amounts to minimization of the penalized spline
criterion

Q�.ˇ;
/ D .p �Xˇ � Z
/0.p �Xˇ � Z
/C �2
 0


where � is the smoothing parameter.

Because minimizing Q�.ˇ;
/ with respect to ˇ and 
 is equivalent to minimizing Q�.ˇ;
/=�, both
problems lead to the same solution, and � D �=� is the smoothing parameter. The mixed model formulation
of spline smoothing has the advantage that the smoothing parameter is selected “automatically.” It is a
function of the covariance parameter estimates, which, in turn, are estimated according to the method you
specify with the METHOD= option in the PROC GLIMMIX statement.

To accommodate nonnormal responses and general link functions, the GLIMMIX procedure uses VarŒ�� D
�e��1Ae��1, where A is the matrix of variance functions and� is the diagonal matrix of mean derivatives
defined earlier. The correspondence between spline smoothing and mixed modeling is then one between a
weighted linear mixed model and a weighted spline. In other words, the minimization criterion that yields
the estimates b̌ and solutionsb
 is then

Q.ˇ;
/ D ��1.p �Xˇ � Z
/0e�A�1e�.p �Xˇ � Z
/0 C ��2
 0


If you choose the TYPE=RSMOOTH covariance structure, PROC GLIMMIX chooses radial basis functions
as the spline basis and transforms them to approximate a thin-plate spline as in Chapter 13.4 of Ruppert,
Wand, and Carroll (2003). For computational expediency, the number of knots is chosen to be less than
the number of data points. Ruppert, Wand, and Carroll (2003) recommend one knot per every four unique
regressor values for one-dimensional smoothers. In the multivariate case, general recommendations are
more difficult, because the optimal number and placement of knots depend on the spatial configuration of
samples. Their recommendation for a bivariate smoother is one knot per four samples, but at least 20 and
no more than 150 knots (Ruppert, Wand, and Carroll 2003, p. 257).

The magnitude of the variance component �2 depends on the metric of the random effects. For example,
if you apply radial smoothing in time, the variance changes if you measure time in days or minutes. If the
solution for the variance component is near zero, then a rescaling of the random effect data can help the
optimization problem by moving the solution for the variance component away from the boundary of the
parameter space.

Knot Selection

The GLIMMIX procedure computes knots for low-rank smoothing based on the vertices or centroids of a
k-d tree. The default is to use the vertices of the tree as the knot locations, if you use the TYPE=RSMOOTH
covariance structure. The construction of this tree amounts to a partitioning of the random regressor space
until all partitions contain at most b observations. The number b is called the bucket size of the k-d tree.
You can exercise control over the construction of the tree by changing the bucket size with the BUCKET=
suboption of the KNOTMETHOD=KDTREE option in the RANDOM statement. A large bucket size leads
to fewer knots, but it is not correct to assume that K, the number of knots, is simply bn=bc. The number of
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vertices depends on the configuration of the values in the regressor space. Also, coordinates of the bounding
hypercube are vertices of the tree. In the one-dimensional case, for example, the extreme values of the
random effect are vertices.

To demonstrate how the k-d tree partitions the random-effects space based on observed data and the influence
of the bucket size, consider the following example from Chapter 53, “The LOESS Procedure.” The SAS
data set Gas contains the results of an engine exhaust emission study (Brinkman 1981). The covariate in
this analysis, E, is a measure of the air-fuel mixture richness. The response, NOx, measures the nitric oxide
concentration (in micrograms per joule, and normalized).

data Gas;
input NOx E;
format NOx E f5.3;
datalines;

4.818 0.831
2.849 1.045
3.275 1.021
4.691 0.97
4.255 0.825
5.064 0.891
2.118 0.71
4.602 0.801
2.286 1.074
0.97 1.148
3.965 1
5.344 0.928
3.834 0.767
1.99 0.701
5.199 0.807
5.283 0.902
3.752 0.997
0.537 1.224
1.64 1.089
5.055 0.973
4.937 0.98
1.561 0.665

;

There are 22 observations in the data set, and the values of the covariate are unique. If you want to smooth
these data with a low-rank radial smoother, you need to choose the number of knots, as well as their place-
ment within the support of the variable E. The k-d tree construction depends on the observed values of the
variable E; it is independent of the values of nitric oxide in the data. The following statements construct a
tree based on a bucket size of b = 11 and display information about the tree and the selected knots:

ods select KDtree KnotInfo;
proc glimmix data=gas nofit;

model NOx = e;
random e / type=rsmooth

knotmethod=kdtree(bucket=11 treeinfo knotinfo);
run;
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The NOFIT option prevents the GLIMMIX procedure from fitting the model. This option is useful if you
want to investigate the knot construction for various bucket sizes. The TREEINFO and KNOTINFO sub-
options of the KNOTMETHOD=KDTREE option request displays of the k-d tree and the knot coordinates
derived from it. Construction of the tree commences by splitting the data in half. For b = 11, n = 22, neither
of the two splits contains more than b observations and the process stops. With a single split value, and the
two extreme values, the tree has two terminal nodes and leads to three knots (Figure 41.13). Note that for
one-dimensional problems, vertices of the k-d tree always coincide with data values.

Figure 41.13 K-d Tree and Knots for Bucket Size 11

The GLIMMIX Procedure

kd-Tree for RSmooth(E)

Node Left Right Split Split
Number Child Child Direction Value

0 1 2 E 0.9280
1 TERMINAL
2 TERMINAL

Radial Smoother
Knots for

RSmooth(E)

Knot
Number E

1 0.6650
2 0.9280
3 1.2240

If the bucket size is reduced to b = 8, the following statements produce the tree and knots in Figure 41.14:

ods select KDtree KnotInfo;
proc glimmix data=gas nofit;

model NOx = e;
random e / type=rsmooth

knotmethod=kdtree(bucket=8 treeinfo knotinfo);
run;

The initial split value of 0.9280 leads to two sets of 11 observations. In order to achieve a partition into cells
that contain at most eight observations, each initial partition is split at its median one more time. Note that
one split value is greater and one split value is less than 0.9280.
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Figure 41.14 K-d Tree and Knots for Bucket Size 8

The GLIMMIX Procedure

kd-Tree for RSmooth(E)

Node Left Right Split Split
Number Child Child Direction Value

0 1 2 E 0.9280
1 3 4 E 0.8070
2 5 6 E 1.0210
3 TERMINAL
4 TERMINAL
5 TERMINAL
6 TERMINAL

Radial Smoother
Knots for

RSmooth(E)

Knot
Number E

1 0.6650
2 0.8070
3 0.9280
4 1.0210
5 1.2240

A further reduction in bucket size to b = 4 leads to the tree and knot information shown in Figure 41.15.
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Figure 41.15 K-d Tree and Knots for Bucket Size 4

The GLIMMIX Procedure

kd-Tree for RSmooth(E)

Node Left Right Split Split
Number Child Child Direction Value

0 1 2 E 0.9280
1 3 4 E 0.8070
2 9 10 E 1.0210
3 5 6 E 0.7100
4 7 8 E 0.8910
5 TERMINAL
6 TERMINAL
7 TERMINAL
8 TERMINAL
9 11 12 E 0.9800

10 13 14 E 1.0890
11 TERMINAL
12 TERMINAL
13 TERMINAL
14 TERMINAL

Radial Smoother
Knots for

RSmooth(E)

Knot
Number E

1 0.6650
2 0.7100
3 0.8070
4 0.8910
5 0.9280
6 0.9800
7 1.0210
8 1.0890
9 1.2240
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The split value for b = 11 is also a split value for b = 8, the split values for b = 8 are a subset of those for
b = 4, and so forth. Figure 41.16 displays the data and the location of split values for the three cases. For
a one-dimensional problem (a univariate smoother), the vertices comprise the split values and the values on
the bounding interval.

You might want to move away from the boundary, in particular for an irregular data configuration or for
multivariate smoothing. The KNOTTYPE=CENTER suboption of the KNOTMETHOD= option chooses
centroids of the leaf node cells instead of vertices. This tends to move the outer knot locations closer to the
convex hull, but not necessarily to data locations. In the emission example, choosing a bucket size of b = 11
and centroids as knot locations yields two knots at E=0.7956 and E=1.076. If you choose the NEAREST
suboption, then the nearest neighbor of a vertex or centroid will serve as the knot location. In this case, the
knot locations are a subset of the data locations, regardless of the dimension of the smooth.

Figure 41.16 Vertices of k-d Trees for Various Bucket Sizes

Odds and Odds Ratio Estimation
In models with a logit, generalized logit, or cumulative logit link, you can obtain estimates of odds ratios
through the ODDSRATIO options in the PROC GLIMMIX, LSMEANS, and MODEL statements. This
section provides details about the computation and interpretation of the computed quantities. Note that for
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these link functions the EXP option in the ESTIMATE and LSMESTIMATE statements also produces odds
or odds ratios.

Consider first a model with a dichotomous outcome variable, linear predictor � D x0ˇ C z0
 , and logit link
function. Suppose that �0 represents the linear predictor for a condition of interest. For example, in a simple
logistic regression model with � D ˛Cˇx, �0 might correspond to the linear predictor at a particular value
of the covariate—say, �0 D ˛ C ˇx0.

The modeled probability is � D 1=.1C expf��g/, and the odds for � D �0 are

�0

1 � �0
D

1=.1C expf��0g/
expf��0g=.1C expf��0g/

D expf�0g

Because �0 is a logit, it represents the log odds. The odds ratio  .�1; �0/ is defined as the ratio of odds for
�1 and �0,

 .�1; �0/ D expf�1 � �0g

The odds ratio compares the odds of the outcome under the condition expressed by �1 to the odds under the
condition expressed by �0. In the preceding simple logistic regression example, this ratio equals expfˇ.x1�
x0/g. The exponentiation of the estimate of ˇ is thus an estimate of the odds ratio comparing conditions
for which x1 � x0 D 1. If x and x + 1 represent standard and experimental conditions, for example,
expfˇg compares the odds of the outcome under the experimental condition to the odds under the standard
condition. For many other types of models, odds ratios can be expressed as simple functions of parameter
estimates. For example, suppose you are fitting a logistic model with a single classification effect with three
levels:

proc glimmix;
class A;
model y = A / dist=binary;

run;

The estimated linear predictor for level j of A isb�j D b̌Cb̨j , j D 1; 2; 3. Because the X matrix is singular
in this model due to the presence of an overall intercept, the solution for the intercept estimates ˇC ˛3, and
the solution for the jth treatment effect estimates ˛j � ˛3. Exponentiating the solutions for ˛1 and ˛2 thus
produces odds ratios comparing the odds for these levels against the third level of A.

Results designated as odds or odds ratios in the GLIMMIX procedure might reduce to simple exponenti-
ations of solutions in the “Parameter Estimates” table, but they are computed by a different mechanism if
the model contains classification variables. The computations rely on general estimable functions; for the
MODEL, LSMEANS, and LSMESTIMATE statements, these functions are based on least squares means.
This enables you to obtain odds ratio estimates in more complicated models that involve main effects and
interactions, including interactions between continuous and classification variables.

In all cases, the results represent the exponentiation of a linear function of the fixed-effects parameters,
� D l0ˇ. If L� and U� are the confidence limits for � on the logit scale, confidence limits for the odds or
the odds ratio are obtained as expfL�g and expfU�g.

The Odds Ratio Estimates Table

This table is produced by the ODDSRATIO option in the MODEL statement. It consists of estimates of
odds ratios and their confidence limits. Odds ratios are produced for the following:
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� classification main effects, if they appear in the MODEL statement

� continuous variables in the MODEL statement, unless they appear in an interaction with a classifica-
tion effect

� continuous variables in the MODEL statement at fixed levels of a classification effect, if the MODEL
statement contains an interaction of the two.

� continuous variables in the MODEL statements if they interact with other continuous variables

The Default Table
Consider the following PROC GLIMMIX statements that fit a logistic model with one classification effect,
one continuous variable, and their interaction (the ODDSRATIO option in the MODEL statement requests
the “Odds Ratio Estimates” table).

proc glimmix;
class A;
model y = A x A*x / dist=binary oddsratio;

run;

By default, odds ratios are computed as follows:

� The covariate is set to its average, x, and the least squares means for the A effect are obtained.
Suppose L.1/ denotes the matrix of coefficients defining the estimable functions that produce the a
least squares means Lb̌, and l.1/j denotes the jth row of L.1/. Differences of the least squares means
against the last level of the A factor are computed and exponentiated:

 .A1; Aa/ D exp
n�

l.1/1 � l.1/a
�b̌o

 .A2; Aa/ D exp
n�

l.1/2 � l.1/a
�b̌o

:::

 .Aa�1; Aa/ D exp
n�

l.1/a�1 � l.1/a
�b̌o

The differences are checked for estimability. Notice that this set of odds ratios can also be obtained
with the following LSMESTIMATE statement (assuming A has five levels):

lsmestimate A 1 0 0 0 -1,
0 1 0 0 -1,
0 0 1 0 -1,
0 0 0 1 -1 / exp cl;

You can also obtain the odds ratios with this LSMEANS statement (assuming the last level of A is
coded as 5):

lsmeans A / diff=control('5') oddsratio cl;
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� The odds ratios for the covariate must take into account that x occurs in an interaction with the A
effect. A second set of least squares means are computed, where x is set to x C 1. Denote the
coefficients of the estimable functions for this set of least squares means as L.2/. Differences of the
least squares means at a given level of factor A are then computed and exponentiated:

 .A.x C 1/1; A.x/1/ D exp
n�

l.2/1 � l.1/1
�b̌o

 .A.x C 1/2; A.x/2/ D exp
n�

l.2/2 � l.1/2
�b̌o

:::

 .A.x C 1/a; A.x/a/ D exp
n�

l.2/a � l.1/a
�b̌o

The differences are checked for estimability. If the continuous covariate does not appear in an inter-
action with the A variable, only a single odds ratio estimate related to x would be produced, relating
the odds of a one-unit shift in the regressor from x.

Suppose you fit a model that contains interactions of continuous variables, as with the following statements:

proc glimmix;
class A;
model y = A x x*z / dist=binary oddsratio;

run;

In the computation of the A least squares means, the continuous effects are set to their means—that is, x and
xz. In the computation of odds ratios for x, linear predictors are computed at x = x, x*z = x � z and at x =
x C 1, x*z = .x C 1/z.

Modifying the Default Table, Customized Odds Ratios
Several suboptions of the ODDSRATIO option in the MODEL statement are available to obtain customized
odds ratio estimates. For customized odds ratios that cannot be obtained with these suboptions, use the EXP
option in the ESTIMATE or LSMESTIMATE statement.

The type of differences constructed when the levels of a classification factor are varied is controlled by
the DIFF= suboption. By default, differences against the last level are taken. DIFF=FIRST computes
differences from the first level, and DIFF=ALL computes odds ratios based on all pairwise differences.

For continuous variables in the model, you can change both the reference value (with the AT suboption) and
the units of change (with the UNIT suboption). By default, a one-unit change from the mean of the covariate
is assessed. For example, the following statements produce all pairwise differences for the A factor:

proc glimmix;
class A;
model y = A x A*x / dist=binary

oddsratio(diff=all
at x=4
unit x=3);

run;

The covariate x is set to the reference value x = 4 in the computation of the least squares means for the A
odds ratio estimates. The odds ratios computed for the covariate are based on differencing this set of least
squares means with a set of least squares means computed at x D 4C 3.
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Odds or Odds Ratio

The odds ratio is the exponentiation of a difference on the logit scale,

 .�1; �0/ D exp f.l1 � l0/ˇg

and expfl1ˇg and expfl0ˇg are the corresponding odds. If the ODDSRATIO option is specified in a suitable
model in the PROC GLIMMIX statement or the individual statements that support the option, odds ratios
are computed in the “Odds Ratio Estimates” table (MODEL statement), the “Differences of Least Squares
Means” table (LSMEANS / DIFF), and the “Simple Effect Comparisons of Least Squares Means” table
(LSMEANS / SLICEDIFF=). Odds are computed in the “Least Squares Means” table.

Odds Ratios in Multinomial Models

The GLIMMIX procedure fits two kinds of models to multinomial data. Models with cumulative link func-
tions apply to ordinal data, and generalized logit models are fit to nominal data. If you model a multinomial
response with LINK=CUMLOGIT or LINK=GLOGIT, odds ratio results are available for these models.

In the generalized logit model, you model baseline category logits. By default, the GLIMMIX procedure
chooses the last category as the reference category. If your nominal response has J categories, the baseline
logit for category j is

log
˚
�j =�J

	
D �j D x0ˇj C z0uj

and

�j D
expf�j gPJ
kD1 expf�kg

�J D 0

As before, suppose that the two conditions to be compared are identified with subscripts 1 and 0. The log
odds ratio of outcome j versus J for the two conditions is then

log
˚
 
�
�j1; �j0

�	
D log

�
�j1=�J1

�j0=�J0

�
D log

�
expf�j1g
expf�j0g

�
D �j1 � �j0

Note that the log odds ratios are again differences on the scale of the linear predictor, but they depend on
the response category. The GLIMMIX procedure determines the estimable functions whose differences
represent log odds ratios as discussed previously but produces separate estimates for each nonreference
response category.

In models for ordinal data, PROC GLIMMIX models the logits of cumulative probabilities. Thus, the
estimates on the linear scale represent log cumulative odds. The cumulative logits are formed as

log
�

Pr.Y � j /
Pr.Y > j /

�
D �j D ˛j C x0ˇ C z0
 D ˛j C Q�

so that the linear predictor depends on the response category only through the intercepts (cutoffs)
˛1; � � � ; ˛J�1. The odds ratio comparing two conditions represented by linear predictors �j1 and �j0 is
then

 
�
�j1; �j0

�
D exp

˚
�j1 � �j0

	
D exp f Q�1 � Q�0g

and is independent of category.
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Parameterization of Generalized Linear Mixed Models
PROC GLIMMIX constructs a generalized linear mixed model according to the specifications in the
CLASS, MODEL, and RANDOM statements. Each effect in the MODEL statement generates one or more
columns in the matrix X, and each G-side effect in the RANDOM statement generates one or more columns
in the matrix Z. R-side effects in the RANDOM statement do not generate model matrices; they serve
only to index observations within subjects. This section shows how the GLIMMIX procedure builds X and
Z. You can output the X and Z matrices to a SAS data set with the OUTDESIGN= option in the PROC
GLIMMIX statement.

The general rules and techniques for parameterization of a linear model are given in “GLM Parameterization
of Classification Variables and Effects” on page 383 of Chapter 19, “Shared Concepts and Topics.” The
following paragraphs discuss how these rules differ in a mixed model, in particular, how parameterization
differs between the X and the Z matrix.

Intercept

By default, all models automatically include a column of 1s in X to estimate a fixed-effect intercept pa-
rameter. You can use the NOINT option in the MODEL statement to suppress this intercept. The NOINT
option is useful when you are specifying a classification effect in the MODEL statement and you want the
parameter estimates to be in terms of the (linked) mean response for each level of that effect, rather than in
terms of a deviation from an overall mean.

By contrast, the intercept is not included by default in Z. To obtain a column of 1s in Z, you must specify
in the RANDOM statement either the INTERCEPT effect or some effect that has only one level.

Interaction Effects

Often a model includes interaction (crossed) effects. With an interaction, PROC GLIMMIX first reorders
the terms to correspond to the order of the variables in the CLASS statement. Thus, B*A becomes A*B if
A precedes B in the CLASS statement. Then, PROC GLIMMIX generates columns for all combinations of
levels that occur in the data. The order of the columns is such that the rightmost variables in the cross index
faster than the leftmost variables. Empty columns (which would contain all 0s) are not generated for X, but
they are for Z.

See Table 19.5 in the section “GLM Parameterization of Classification Variables and Effects” on page 383
of Chapter 19, “Shared Concepts and Topics,” for an example of an interaction parameterization.

Nested Effects

Nested effects are generated in the same manner as crossed effects. Hence, the design columns generated
by the following two statements are the same (but the ordering of the columns is different):

Note that nested effects are often distinguished from interaction effects by the implied randomization struc-
ture of the design. That is, they usually indicate random effects within a fixed-effects framework. The fact
that random effects can be modeled directly in the RANDOM statement might make the specification of
nested effects in the MODEL statement unnecessary.

See Table 19.6 in the section “GLM Parameterization of Classification Variables and Effects” on page 383
of Chapter 19, “Shared Concepts and Topics,” for an example of the parameterization of a nested effect.
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Implications of the Non-Full-Rank Parameterization

For models with fixed effects involving classification variables, there are more design columns in X con-
structed than there are degrees of freedom for the effect. Thus, there are linear dependencies among the
columns of X. In this event, all of the parameters are not estimable; there is an infinite number of solutions
to the mixed model equations. The GLIMMIX procedure uses a generalized inverse (a g2-inverse, Pringle
and Rayner (1971), to obtain values for the estimates (Searle 1971). The solution values are not displayed
unless you specify the SOLUTION option in the MODEL statement. The solution has the characteristic that
estimates are 0 whenever the design column for that parameter is a linear combination of previous columns.
With this parameterization, hypothesis tests are constructed to test linear functions of the parameters that
are estimable.

Some procedures (such as the CATMOD and LOGISTIC procedures) reparameterize models to full rank by
using restrictions on the parameters. PROC GLM, PROC MIXED, and PROC GLIMMIX do not reparam-
eterize, making the hypotheses that are commonly tested more understandable. See Goodnight (1978b) for
additional reasons for not reparameterizing.

Missing Level Combinations

PROC GLIMMIX handles missing level combinations of classification variables in the same manner as
PROC GLM and PROC MIXED. These procedures delete fixed-effects parameters corresponding to miss-
ing levels in order to preserve estimability. However, PROC GLIMMIX does not delete missing level com-
binations for random-effects parameters because linear combinations of the random-effects parameters are
always predictable. These conventions can affect the way you specify your CONTRAST and ESTIMATE
coefficients.

Notes on the EFFECT Statement

Some restrictions and limitations for models that contain constructed effects are in place with the GLIMMIX
procedure. Also, you should be aware of some special defaults and handling that apply only when the model
contains constructed fixed and/or random effects.

� Constructed effects can be used in the MODEL and RANDOM statements but not to specify SUB-
JECT= or GROUP= effects.

� Computed variables are not supported in the specification of a constructed effect. All variables needed
to form the collection of columns for a constructed effect must be in the data set.

� You cannot use constructed effects that comprise continuous variables or interactions with other con-
structed effects as the LSMEANS or LSMESTIMATE effect.

� The calculation of quantities that depend on least squares means, such as odds ratios in the “Odds
Ratio Estimates” table, is not possible if the model contains fixed effects that consist of more than one
constructed effects, unless all constructed effects are of spline type. For example, least squares means
computations are not possible in the following model because the MM_AB*cvars effect contains two
constructed effects:

proc glimmix;
class A B C;
effect MM_AB = MM(A B);
effect cvars = COLLECTION(x1 x2 x3);
model y = C MM_AB*cvars;

run;
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� If the MODEL or RANDOM statement contains constructed effects, the default degrees-of-freedom
method for mixed models is DDFM=KENWARDROGER. The containment degrees-of-freedom
method (DDFM=CONTAIN) is not available in these models.

� If the model contains fixed spline effects, least squares means are computed at the average spline
coefficients across the usable data, possibly further averaged over levels of CLASS variables that
interact with the spline effects in the model. You can use the AT option in the LSMEANS and
LSMESTIMATE statements to construct the splines for particular values of the covariates involved.
Consider, for example, the following statements:

proc glimmix;
class A;
effect spl = spline(x);
model y = A spl;
lsmeans A;
lsmeans A / at means;
lsmeans A / at x=0.4;

run;

Suppose that the spl effect contributes seven columns Œs1; � � � ; s7� to the X matrix. The least squares
means coefficients for the spl effect in the first LSMEANS statement are Œs1; � � � ; s7�with the averages
taken across the observations used in the analysis. The second LSMEANS statement computes the
spline coefficient at the average value of x: Œs.x/1; � � � ; s.x/7�. The final LSMEANS statement uses
Œs.0:4/1; � � � ; s.0:4/7�. Using the AT option for least squares means calculations with spline effects
can resolve inestimability issues.

� Using a spline effect with B-spline basis in the RANDOM statement is not the same as using a
penalized B-spline (P-spline) through the TYPE=PSPLINE option in the RANDOM statement. The
following statement constructs a penalized B-spline by using mixed model methodology:

random x / type=pspline;

The next set of statements defines a set of B-spline columns in the Z matrix with uncorrelated random
effects and homogeneous variance:

effect bspline = spline(x);
random bspline / type=vc;

This does not lead to a properly penalized fit. See the documentation on TYPE=PSPLINE about the
construction of penalties for B-splines through the covariance matrix of random effects.

Positional and Nonpositional Syntax for Contrast Coefficients

When you define custom linear hypotheses with the CONTRAST or ESTIMATE statement, the GLIMMIX
procedure sets up an L vector or matrix that conforms to the fixed-effects solutions or the fixed- and random-
effects solutions. With the LSMESTIMATE statement, you specify coefficients of the matrix K that is then
converted into a coefficient matrix that conforms to the fixed-effects solutions.

There are two methods for specifying the entries in a coefficient matrix (hereafter simply referred to as the L
matrix), termed the positional and nonpositional methods. In the positional form, and this is the traditional
method, you provide a list of values that occupy the elements of the L matrix associated with the effect in
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question in the order in which the values are listed. For traditional model effects comprising continuous
and classification variables, the positional syntax is simpler in some cases (main effects) and more cumber-
some in others (interactions). When you work with effects constructed through the experimental EFFECT
statement, the nonpositional syntax is essential.

Consider, for example, the following two-way model with interactions where factors A and B have three and
two levels, respectively:

proc glimmix;
class a b block;
model y = a b a*b / ddfm=kr;
random block a*block;

run;

To test the difference of the B levels at the second level of A with a CONTRAST statement (a slice), you
need to assign coefficients 1 and –1 to the levels of B and to the levels of the interaction where A is at the
second level. Two examples of equivalent CONTRAST statements by using positional and nonpositional
syntax are as follows:

contrast 'B at A2' b 1 -1 a*b 0 0 1 -1 ;
contrast 'B at A2' b 1 -1 a*b [1 2 1] [-1 2 2];

Because A precedes B in the CLASS statement, the levels of the interaction are formed as
˛1ˇ1; ˛1ˇ2; ˛2ˇ1; ˛2ˇ2; � � � . If B precedes A in the CLASS statement, you need to modify the coeffi-
cients accordingly:

proc glimmix;
class b a block;
model y = a b a*b / ddfm=kr;
random block a*block;
contrast 'B at A2' b 1 -1 a*b 0 1 0 0 -1 ;
contrast 'B at A2' b 1 -1 a*b [1 1 2] [-1 2 2];
contrast 'B at A2' b 1 -1 a*b [1, 1 2] [-1, 2 2];

run;

You can optionally separate the L value entry from the level indicators with a comma, as in the last CON-
TRAST statement.

The general syntax for defining coefficients with the nonpositional syntax is as follows:

effect-name [multiplier < , > level-values] . . . < [multiplier < , > level-values] >

The first entry in square brackets is the multiplier that is applied to the elements of L for the effect after the
level-values have been resolved and any necessary action forming L has been taken.

The level-values are organized in a specific form:

� The number of entries should equal the number of terms needed to construct the effect. For effects
that do not contain any constructed effects, this number is simply the number of terms in the name of
the effect.

� Values of continuous variables needed for the construction of the L matrix precede the level indicators
of CLASS variables.

� If the effect involves constructed effects, then you need to provide as many continuous and classifi-
cation variables as are needed for the effect formation. For example, if a grouping effect is defined
as
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class c;
effect v = vars(x1 x2 c);

then a proper nonpositional syntax would be, for example,

v [0.5, 0.2 0.3 3]

� If an effect contains both regular terms (old-style effects) and constructed effects, then the order of
the coefficients is as follows: continuous values for old-style effects, class levels for CLASS vari-
ables in old-style effects, continuous values for constructed effects, and finally class levels needed for
constructed effects.

Assume that C has four levels so that effect v contributes six elements to the L matrix. When PROC
GLIMMIX resolves this syntax, the values 0.2 and 0.3 are assigned to the positions for x1 and x2 and
a 1 is associated with the third level of C. The resulting vector is then multiplied by 0.5 to produce

Œ0:1 0:15 0 0 0:5 0�

Note that you enter the levels of the classification variables in the square brackets, not their formatted values.
The ordering of the levels of CLASS variables can be gleaned from the “Class Level Information” table.

To specify values for continuous variables, simply give their value as one of the terms in the effect. The
nonpositional syntax in the following ESTIMATE statement is read as “1-time the value 0.4 in the column
associated with level 2 of A”

proc glimmix;
class a;
model y = a a*x / s;
lsmeans a / e at x=0.4;
estimate 'A2 at x=0.4' intercept 1 a 0 1 a*x [1,0.4 2] / e;

run;

Because the value before the comma serves as a multiplier, the same estimable function could also be
constructed with the following statements:

estimate 'A2 at x=0.4' intercept 1 a 0 1 a*x [ 4, 0.1 2];
estimate 'A2 at x=0.4' intercept 1 a 0 1 a*x [ 2, 0.2 2];
estimate 'A2 at x=0.4' intercept 1 a 0 1 a*x [-1, -0.4 2];

Note that continuous variables needed to construct an effect are always listed before any CLASS variables.

When you work with constructed effects, the nonpositional syntax works in the same way. For example,
the following model contains a classification effect and a B-spline. The first two ESTIMATE statements
produce predicted values for level one of C when the continuous variable x takes on the values 20 and 10,
respectively.



3100 F Chapter 41: The GLIMMIX Procedure

proc glimmix;
class c;
effect spl = spline(x / knotmethod=equal(5));
model y = c spl;
estimate 'C = 1 @ x=20' intercept 1 c 1 spl [1,20],

'C = 1 @ x=10' intercept 1 c 1 spl [1,10];
estimate 'Difference' spl [1,20] [-1,10];

run;

The GLIMMIX procedure computes the spline coefficients for the first ESTIMATE statement based on
x = 20, and similarly in the second statement for x = 10. The third ESTIMATE statement computes the
difference of the predicted values. Because the spline effect does not interact with the classification variable,
this difference does not depend on the level of C. If such an interaction is present, you can estimate the
difference in predicted values for a given level of C by using the nonpositional syntax. Because the effect
C*spl contains both old-style terms (C) and a constructed effect, you specify the values for the old-style
terms before assigning values to constructed effects:

proc glimmix;
class c;
effect spl = spline(x / knotmethod=equal(5));
model y = spl*c;
estimate 'C2 = 1, x=20' intercept 1 c*spl [1,1 20];
estimate 'C2 = 2, x=20' intercept 1 c*spl [1,2 20];
estimate 'C diff at x=20' c*spl [1,1 20] [-1,2 20];

run;

It is recommended to add the E option to the CONTRAST, ESTIMATE, or LSMESTIMATE statement to
verify that the L matrix is formed according to your expectations.

In any row of an ESTIMATE or CONTRAST statement you can choose positional and nonpositional syntax
separately for each effect. You cannot mix the two forms of syntax for coefficients of a single effect,
however. For example, the following statement is not proper because both forms of syntax are used for the
interaction effect:

estimate 'A1B1 - A1B2' b 1 -1 a*b 0 1 [-1, 1 2];

Response-Level Ordering and Referencing
In models for binary and multinomial data, the response-level ordering is important because it reflects the
following:

� which probability is modeled with binary data

� how categories are ordered for ordinal data

� which category serves as the reference category in nominal generalized logit models (models for
nominal data)

You should view the “Response Profile” table to ensure that the categories are properly arranged and that
the desired outcome is modeled. In this table, response levels are arranged by Ordered Value. The lowest
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response level is assigned Ordered Value 1, the next lowest is assigned Ordered Value 2, and so forth. In
binary models, the probability modeled is the probability of the response level with the lowest Ordered
Value.

You can change which probability is modeled and the Ordered Value in the “Response Profile” table with
the DESCENDING, EVENT=, ORDER=, and REF= response variable options in the MODEL statement.
See the section “Response Level Ordering” on page 4237 in Chapter 54, “The LOGISTIC Procedure,” for
examples about how to use these options to affect the probability being modeled for binary data.

For multinomial models, the response-level ordering affects two important aspects. In cumulative link
models the categories are assumed ordered according to their Ordered Value in the “Response Profile”
table. If the response variable is a character variable or has a format, you should check this table carefully
as to whether the Ordered Values reflect the correct ordinal scale.

In generalized logit models (for multinomial data with unordered categories), one response category is
chosen as the reference category in the formulation of the generalized logits. By default, the linear predictor
in the reference category is set to 0, and the reference category corresponds to the entry in the “Response
Profile” table with the highest Ordered Value. You can affect the assignment of Ordered Values with the
DESCENDING and ORDER= options in the MODEL statement. You can choose a different reference
category with the REF= option. The choice of the reference category for generalized logit models affects
the results. It is sometimes recommended that you choose the category with the highest frequency as the
reference (see, for example, Brown and Prescott 1999, p. 160). You can achieve this with the GLIMMIX
procedure by combining the ORDER= and REF= options, as in the following statements:

proc glimmix;
class preference;
model preference(order=freq ref=first) = feature price /

dist=multinomial
link=glogit;

random intercept / subject=store group=preference;
run;

The ORDER=FREQ option arranges the categories by descending frequency. The REF=FIRST option then
selects the response category with the lowest Ordered Value—the most frequent category—as the reference.

Comparing the GLIMMIX and MIXED Procedures
The MIXED procedure is subsumed by the GLIMMIX procedure in the following sense:

� Linear mixed models are a special case in the family of generalized linear mixed models; a linear
mixed model is a generalized linear mixed model where the conditional distribution is normal and the
link function is the identity function.

� Most models that can be fit with the MIXED procedure can also be fit with the GLIMMIX procedure.

Despite this overlap in functionality, there are also some important differences between the two procedures.
Awareness of these differences enables you to select the most appropriate tool in situations where you have
a choice between procedures and to identify situations where a choice does not exist. Furthermore, the
%GLIMMIX macro, which fits generalized linear mixed models by linearization methods, essentially calls
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the MIXED procedure repeatedly. If you are aware of the syntax differences between the procedures, you
can easily convert your %GLIMMIX macro statements.

Important functional differences between PROC GLIMMIX and PROC MIXED for linear models and linear
mixed models include the following:

� The MIXED procedure models R-side effects through the REPEATED statement and G-side effects
through the RANDOM statement. The GLIMMIX procedure models all random components of the
model through the RANDOM statement. You use the _RESIDUAL_ keyword or the RESIDUAL
option in the RANDOM statement to model R-side covariance structure in the GLIMMIX procedure.
For example, the PROC MIXED statement

repeated / subject=id type=ar(1);

is equivalent to the following RANDOM statement in the GLIMMIX procedure:

random _residual_ / subject=id type=ar(1);

If you need to specify an effect for levelization—for example, because the construction of the R matrix
is order-dependent or because you need to account for missing values—the RESIDUAL option in the
RANDOM statement of the GLIMMIX procedure is used to indicate that you are modeling an R-side
covariance nature. For example, the PROC MIXED statements

class time id;
repeated time / subject=id type=ar(1);

are equivalent to the following PROC GLIMMIX statements:

class time id;
random time / subject=id type=ar(1) residual;

� There is generally considerable overlap in the covariance structures available through the TYPE=
option in the RANDOM statement in PROC GLIMMIX and through the TYPE= options in the RAN-
DOM and REPEATED statements in PROC MIXED. However, the Kronecker-type structures, the
geometrically anisotropic spatial structures, and the GDATA= option in the RANDOM statement of
the MIXED procedure are currently not supported in the GLIMMIX procedure. The MIXED proce-
dure, on the other hand, does not support TYPE=RSMOOTH and TYPE=PSPLINE.

� For normal linear mixed models, the (default) METHOD=RSPL in PROC GLIMMIX is identical to
the default METHOD=REML in PROC MIXED. Similarly, METHOD=MSPL in PROC GLIMMIX
is identical for these models to METHOD=ML in PROC MIXED. The GLIMMIX procedure does not
support Type I through Type III (ANOVA) estimation methods for variance component models. Also,
the procedure does not have a METHOD=MIVQUE0 option, but you can produce these estimates
through the NOITER option in the PARMS statement.

� The MIXED procedure solves the iterative optimization problem by means of a ridge-stabilized
Newton-Raphson algorithm. With the GLIMMIX procedure, you can choose from a variety of opti-
mization methods via the NLOPTIONS statement. The default method for most GLMMs is a quasi-
Newton algorithm. A ridge-stabilized Newton-Raphson algorithm, akin to the optimization method in
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the MIXED procedure, is available in the GLIMMIX procedure through the TECHNIQUE=NRRIDG
option in the NLOPTIONS statement. Because of differences in the line-search methods, update
methods, and the convergence criteria, you might get slightly different estimates with the two pro-
cedures in some instances. The GLIMMIX procedure, for example, monitors several convergence
criteria simultaneously.

� You can produce predicted values, residuals, and confidence limits for predicted values with both
procedures. The mechanics are slightly different, however. With the MIXED procedure you use the
OUTPM= and OUTP= options in the MODEL statement to write statistics to data sets. With the
GLIMMIX procedure you use the OUTPUT statement and indicate with keywords which “flavor” of
a statistic to compute.

� The following GLIMMIX statements are not available in the MIXED procedure: COVTEST, EF-
FECT, FREQ, LSMESTIMATE, OUTPUT, and programming statements.

� A sampling-based Bayesian analysis as through the PRIOR statement in the MIXED procedure is not
available in the GLIMMIX procedure.

� In the GLIMMIX procedure, several RANDOM statement options apply to the RANDOM statement
in which they are specified. For example, the following statements in the GLIMMIX procedure
request that the solution vector be printed for the A and A*B*C random effects and that the G matrix
corresponding to the A*B interaction random effect be displayed:

random a / s;
random a*b / G;
random a*b*c / alpha=0.04;

Confidence intervals with a 0.96 coverage probability are produced for the solutions of the A*B*C ef-
fect. In the MIXED procedure, the S option, for example, when specified in one RANDOM statement,
applies to all RANDOM statements.

� If you select nonmissing values in the value-list of the DDF= option in the MODEL statement, PROC
GLIMMIX uses these values to override degrees of freedom for this effect that might be determined
otherwise. For example, the following statements request that the denominator degrees of freedom
for tests and confidence intervals involving the A effect be set to 4:

proc glimmix;
class block a b;
model y = a b a*b / s ddf=4,.,. ddfm=satterthwaite;
random block a*block / s;
lsmeans a b a*b / diff;

run;

In the example, this applies to the “Type III Tests of Fixed Effects,” “Least Squares Means,” and “Dif-
ferences of Least Squares Means” tables. In the MIXED procedure, the Satterthwaite approximation
overrides the DDF= specification.

� The DDFM=BETWITHIN degrees-of-freedom method in the GLIMMIX procedure requires that the
data be processed by subjects; see the section “Processing by Subjects” on page 3082.
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� When you add the response variable to the CLASS statement, PROC GLIMMIX defaults to the multi-
nomial distribution. Adding the response variable to the CLASS statement in PROC MIXED has no
effect on the fitted model.

� The ODS name of the table for the solution of fixed effects is SolutionF in the MIXED procedure. In
PROC GLIMMIX, the name of the table that contains fixed-effects solutions is “ParameterEstimates.”
In generalized linear models, this table also contains scale parameters and overdispersion parameters.
The MIXED procedure always produces a “Covariance Parameter Estimates” table. The GLIMMIX
procedure produces this table only in mixed models or models with nontrivial R-side covariance
structure.

� If you compute predicted values in the GLIMMIX procedure in a model with only R-side random
components and missing values for the dependent variable, the predicted values will not be kriging
predictions as is the case with the MIXED procedure.

Singly or Doubly Iterative Fitting
Depending on the structure of your model, the GLIMMIX procedure determines the appropriate approach
for estimating the parameters of the model. The elementary algorithms fall into three categories:

1. Noniterative algorithms
A closed form solution exists for all model parameters. Standard linear models with homoscedastic,
uncorrelated errors can be fit with noniterative algorithms.

2. Singly iterative algorithms
A single optimization, consisting of one or more iterations, is performed to obtain solutions for the
parameter estimates by numerical techniques. Linear mixed models for normal data can be fit with
singly iterative algorithms. Laplace and quadrature estimation for generalized linear mixed mod-
els uses a singly iterative algorithm with a separate suboptimization to compute the random-effects
solutions as modes of the log-posterior distribution.

3. Doubly iterative algorithms
A model of simpler structure is derived from the target model. The parameters of the simpler model
are estimated by noniterative or singly iterative methods. Based on these new estimates, the model
of simpler structure is rederived and another estimation step follows. The process continues until
changes in the parameter estimates are sufficiently small between two recomputations of the simpler
model or until some other criterion is met. The rederivation of the model can often be cast as a change
of the response to some pseudo-data along with an update of implicit model weights.
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Obviously, noniterative algorithms are preferable to singly iterative ones, which in turn are preferable to
doubly iterative algorithms. Two drawbacks of doubly iterative algorithms based on linearization are that
likelihood-based measures apply to the pseudo-data, not the original data, and that at the outer level the
progress of the algorithm is tied to monitoring the parameter estimates. The advantage of doubly iterative
algorithms, however, is to offer—at convergence—the statistical inference tools that apply to the simpler
models.

The output and log messages contain information about which algorithm is employed. For a noniterative
algorithm, PROC GLIMMIX produces a message that no optimization was performed. Noniterative algo-
rithms are employed automatically for normal data with identity link.

You can determine whether a singly or doubly iterative algorithm was used, based on the “Iteration History”
table and the “Convergence Status” table (Figure 41.17).

Figure 41.17 Iteration History and Convergence Status in Singly Iterative Fit

The GLIMMIX Procedure

Iteration History

Objective Max
Iteration Restarts Evaluations Function Change Gradient

0 0 4 83.039723731 . 13.63536
1 0 3 82.189661988 0.85006174 0.281308
2 0 3 82.189255211 0.00040678 0.000174
3 0 3 82.189255211 0.00000000 1.05E-10

Convergence criterion (GCONV=1E-8) satisfied.

The “Iteration History” table contains the Evaluations column that shows how many function evaluations
were performed in a particular iteration. The convergence status message informs you which convergence
criterion was met when the estimation process concluded. In a singly iterative fit, the criterion is one
that applies to the optimization. In other words, it is one of the criteria that can be controlled with the
NLOPTIONS statement: see the ABSCONV=, ABSFCONV=, ABSGCONV=, ABSXCONV=, FCONV=,
or GCONV= option.

In a doubly iterative fit, the “Iteration History” table does not contain an Evaluations column. Instead it
displays the number of iterations within an optimization (Subiterations column in Figure 41.18).
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Figure 41.18 Iteration History and Convergence Status in Doubly Iterative Fit

Iteration History

Objective Max
Iteration Restarts Subiterations Function Change Gradient

0 0 5 79.688580269 0.11807224 7.851E-7
1 0 3 81.294622554 0.02558021 8.209E-7
2 0 2 81.438701534 0.00166079 4.061E-8
3 0 1 81.444083567 0.00006263 2.311E-8
4 0 1 81.444265216 0.00000421 0.000025
5 0 1 81.444277364 0.00000383 0.000023
6 0 1 81.444266322 0.00000348 0.000021
7 0 1 81.44427636 0.00000316 0.000019
8 0 1 81.444267235 0.00000287 0.000017
9 0 1 81.444275529 0.00000261 0.000016

10 0 1 81.44426799 0.00000237 0.000014
11 0 1 81.444274843 0.00000216 0.000013
12 0 1 81.444268614 0.00000196 0.000012
13 0 1 81.444274277 0.00000178 0.000011
14 0 1 81.444269129 0.00000162 9.772E-6
15 0 0 81.444273808 0.00000000 9.102E-6

Convergence criterion (PCONV=1.11022E-8) satisfied.

The Iteration column then counts the number of optimizations. The “Convergence Status” table indicates
that the estimation process concludes when a criterion is met that monitors the parameter estimates across
optimization, namely the PCONV= or ABSPCONV= criterion.

You can control the optimization process with the GLIMMIX procedure through the NLOPTIONS state-
ment. Its options affect the individual optimizations. In a doubly iterative scheme, these apply to all opti-
mizations.

The default optimization techniques are TECHNIQUE=NONE for noniterative estimation, TECH-
NIQUE=NEWRAP for singly iterative methods in GLMs, TECHNIQUE=NRRIDG for pseudo-likelihood
estimation with binary data, and TECHNIQUE=QUANEW for other mixed models.

Default Estimation Techniques
Based on the structure of the model, the GLIMMIX procedure selects the estimation technique for estimating
the model parameters. If you fit a generalized linear mixed model, you can change the estimation technique
with the METHOD= option in the PROC GLIMMIX statement. The defaults are determined as follows:

� generalized linear model

– normal distribution: restricted maximum likelihood

– all other distributions: maximum likelihood
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� generalized linear model with overdispersion
Parameters (ˇ; �, if present) are estimated by (restricted) maximum likelihood as for generalized
linear models. The overdispersion parameter is estimated from the Pearson statistic after all other
parameters have been estimated.

� generalized linear mixed models
The default technique is METHOD=RSPL, corresponding to maximizing the residual log pseudo-
likelihood with an expansion about the current solutions of the best linear unbiased predic-
tors of the random effects. In models for normal data with identity link, METHOD=RSPL
and METHOD=RMPL are equivalent to restricted maximum likelihood estimation, and
METHOD=MSPL and METHOD=MMPL are equivalent to maximum likelihood estimation. This is
reflected in the labeling of statistics in the “Fit Statistics” table.

Default Output
The following sections describe the output that PROC GLIMMIX produces by default. The output is orga-
nized into various tables, which are discussed in the order of appearance. Note that the contents of a table
can change with the estimation method or the model being fit.

Model Information

The “Model Information” table displays basic information about the fitted model, such as the link and
variance functions, the distribution of the response, and the data set. If important model quantities—for
example, the response, weights, link, or variance function—are user-defined, the “Model Information” table
displays the final assignment to the respective variable, as determined from your programming statements.
If the table indicates that the variance matrix is blocked by an effect, then PROC GLIMMIX processes the
data by subjects. The “Dimensions” table displays the number of subjects. For more information about
processing by subjects, see the section “Processing by Subjects” on page 3082. The ODS name of the
“Model Information” table is ModelInfo.

Class Level Information

The “Class Level Information” table lists the levels of every variable specified in the CLASS statement. You
should check this information to make sure that the data are correct. You can adjust the order of the CLASS
variable levels with the ORDER= option in the PROC GLIMMIX statement. The ODS name of the “Class
Level Information” table is ClassLevels.

Number of Observations

The “Number of Observations” table displays the number of observations read from the input data set and
the number of observations used in the analysis. If you specify a FREQ statement, the table also displays the
sum of frequencies read and used. If the events/trials syntax is used for the response, the table also displays
the number of events and trials used in the analysis. The ODS name of the “Number of Observations” table
is NObs.
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Response Profile

For binary and multinomial data, the “Response Profile” table displays the Ordered Value from which the
GLIMMIX procedure determines the following:

� the probability being modeled for binary data

� the ordering of categories for ordinal data

� the reference category for generalized logit models

For each response category level, the frequency used in the analysis is reported. The section “Response-
Level Ordering and Referencing” on page 3100 explains how you can use the DESCENDING, EVENT=,
ORDER=, and REF= options to affect the assignment of Ordered Values to the response categories. The
ODS name of the “Response Profile” table is ResponseProfile.

Dimensions

The “Dimensions” table displays information from which you can determine the size of relevant matrices in
the model. This table is useful in determining CPU time and memory requirements. For ODS purposes, the
name of the “Dimensions” table is “Dimensions.”

Optimization Information

The “Optimization Information” table displays important details about the optimization process.

The optimization technique that is displayed in the table is the technique that applies to any single optimiza-
tion. For singly iterative methods that is the optimization method.

The number of parameters that are updated in the optimization equals the number of parameters in this table
minus the number of equality constraints. The number of constraints is displayed if you fix covariance pa-
rameters with the HOLD= option in the PARMS statement. The GLIMMIX procedure also lists the number
of upper and lower boundary constraints. Note that the procedure might impose boundary constraints for
certain parameters, such as variance components and correlation parameters. Covariance parameters for
which a HOLD= was issued have an upper and lower boundary equal to the parameter value.

If a residual scale parameter is profiled from the optimization, it is also shown in the “Optimization Infor-
mation” table.

In a GLMM for which the parameters are estimated by one of the linearization methods, you need to initiate
the process of computing the pseudo-response. This can be done based on existing estimates of the fixed
effects, or by using the data themselves—possibly after some suitable adjustment—as an estimate of the
initial mean. The default in PROC GLIMMIX is to use the data themselves to derive initial estimates of
the mean function and to construct the pseudo-data. The “Optimization Information” table shows how the
pseudo-data are determined initially. Note that this issue is separate from the determination of starting values
for the covariance parameters. These are computed as minimum variance quadratic unbiased estimates (with
0 priors, MIVQUE0; Goodnight 1978a) or obtained from the value-list in the PARMS statement.

The ODS name of the table is OptInfo.
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Iteration History

The “Iteration History” table describes the progress of the estimation process. In singly iterative methods,
the table displays the following:

� the iteration count, Iteration

� the number of restarts, Restarts

� the number of function evaluations, Evaluations

� the objective function, Objective

� the change in the objective function, Change

� the absolute value of the largest (projected) gradient, MaxGradient

Note that the change in the objective function is not the convergence criterion monitored by the GLIMMIX
procedure. PROC GLIMMIX tracks several convergence criteria simultaneously; see the ABSCONV=,
ABSFCONV=, ABSGCONV=, ABSXCONV=, FCONV=, or GCONV= option in the NLOPTIONS state-
ment.

For doubly iterative estimation methods, the “Iteration History” table does not display the progress of the
individual optimizations; instead, it reports on the progress of the outer iterations. Every row of the table
then corresponds to an update of the linearization, the computation of a new set of pseudo-data, and a new
optimization. In the listing, PROC GLIMMIX displays the following:

� the optimization count, Iteration

� the number of restarts, Restarts

� the number of iterations per optimization, Subiterations

� the change in the parameter estimates, Change

� the absolute value of the largest (projected) gradient at the end of the optimization, MaxGradient

By default, the change in the parameter estimates is expressed in terms of the relative PCONV criterion.
If you request an absolute criterion with the ABSPCONV option of the PROC GLIMMIX statement, the
change reflects the largest absolute difference since the last optimization.

If you specify the ITDETAILS option in the PROC GLIMMIX statement, parameter estimates and their
gradients are added to the “Iteration History” table. For ODS purposes, the name of the “Iteration History”
table is “IterHistory.”

Convergence Status

The “Convergence Status” table contains a status message describing the reason for termination of the
optimization. The message is also written to the log. The ODS name of the “Convergence Status” table is
ConvergenceStatus, and you can query the nonprinting numeric variable Status to check for a successful
optimization. This is useful in batch processing, or when processing BY groups, such as in simulations.
Successful optimizations are indicated by the value 0 of the Status variable.
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Fit Statistics

The “Fit Statistics” table provides statistics about the estimated model. The first entry of the table cor-
responds to the negative of twice the (possibly restricted) log likelihood, log pseudo-likelihood, or log
quasi-likelihood. If the estimation method permits the true log likelihood or residual log likelihood, the de-
scription of the first entry reads accordingly. Otherwise, the fit statistics are preceded by the words Pseudo-
or Quasi-, for Pseudo- and Quasi-Likelihood estimation, respectively.

Note that the (residual) log pseudo-likelihood in a GLMM is the (residual) log likelihood of a linearized
model. You should not compare these values across different statistical models, even if the models are
nested with respect to fixed and/or G-side random effects. It is possible that between two nested models the
larger model has a smaller pseudo-likelihood. For this reason, IC=NONE is the default for GLMMs fit by
pseudo-likelihood methods.

See the IC= option of the PROC GLIMMIX statement and Table 41.2 for the definition and computation of
the information criteria reported in the “Fit Statistics” table.

For generalized linear models, the GLIMMIX procedure reports Pearson’s chi-square statistic

X2 D
X
i

wi .yi �b�i /2
a.b�i /

where a.b�i / is the variance function evaluated at the estimated mean.

For GLMMs, the procedure typically reports a generalized chi-square statistic,

X2g Dbr0V.b��/�1br
so that the ratio of X2 or X2g and the degrees of freedom produces the usual residual dispersion estimate.

If the R-side scale parameter � is not extracted from V, the GLIMMIX procedure computes

X2g Dbr0V.b�/�1br
as the generalized chi-square statistic. This is the case, for example, if R-side covariance structures are
varied by a GROUP= effect or if the scale parameter is not profiled for an R-side TYPE=CS, TYPE=SP,
TYPE=AR, TYPE=TOEP, or TYPE=ARMA covariance structure.

For METHOD=LAPLACE, the generalized chi-square statistic is not reported. Instead, the Pearson statistic
for the conditional distribution appears in the “Conditional Fit Statistics” table.

If your model contains smooth components (such as TYPE=RSMOOTH), then the “Fit Statistics” table also
displays the residual degrees of freedom of the smoother. These degrees of freedom are computed as

df smooth;res D f � trace.S/

where S is the “smoother” matrix—that is, the matrix that produces the predicted values on the linked scale.

The ODS name of the “Fit Statistics” table is FitStatistics.



Notes on Output Statistics F 3111

Covariance Parameter Estimates

In a GLMM, the “Covariance Parameter Estimates” table displays the estimates of the covariance parameters
and their asymptotic standard errors. This table is produced only for generalized linear mixed models.
In generalized linear models with scale parameter, or when an overdispersion parameter is present, the
estimates of parameters related to the dispersion are displayed in the “Parameter Estimates” table.

The standard error of the covariance parameters is determined from the diagonal entries of the asymptotic
variance matrix of the covariance parameter estimates. You can display this matrix with the ASYCOV
option in the PROC GLIMMIX statement.

The ODS name of the “Covariance Parameter Estimates” table is CovParms.

Type III Tests of Fixed Effects

The “Type III Tests of Fixed Effects” table contains hypothesis tests for the significance of each of the
fixed effects specified in the MODEL statement. By default, PROC GLIMMIX computes these tests by first
constructing a Type III L matrix for each effect; see Chapter 15, “The Four Types of Estimable Functions.”
The L matrix is then used to construct the test statistic

F D
b̌0L0.LQL0/�1Lb̌

rank.LQL0/

where the matrix Q depends on the estimation method and options. For example, in a GLMM, the default
is Q D .X0V.b�/�1X/�, where V.�/ is the marginal variance of the pseudo-response. If you specify the
DDFM=KENWARDROGER option, Q is the estimated variance matrix of the fixed effects, adjusted by
the method of Kenward and Roger (1997). If the EMPIRICAL= option is in effect, Q corresponds to the
selected sandwich estimator.

You can use the HTYPE= option in the MODEL statement to obtain tables of Type I (sequential) tests and
Type II (adjusted) tests in addition to or instead of the table of Type III (partial) tests.

The ODS names of the “Type I Tests of Fixed Effects” through the “Type III Tests of Fixed Effects” tables
are Tests1 through Tests3, respectively.

Notes on Output Statistics
Table 41.14 lists the statistics computed with the OUTPUT statement of the GLIMMIX procedure and their
default names. This section provides further details about these statistics.

The distinction between prediction and confidence limits in Table 41.14 stems from the involvement of the
predictors of the random effects. If the random-effect solutions (BLUPs, EBES) are involved, then the
associated standard error used in computing the limits are standard errors of prediction rather than standard
errors of estimation. The prediction limits are not limits for the prediction of a new observation.

The Pearson residuals in Table 41.14 are “Pearson-type” residuals, because the residuals are standardized by
the square root of the marginal or conditional variance of an observation. Traditionally, Pearson residuals in
generalized linear models are divided by the square root of the variance function. The GLIMMIX procedure
divides by the square root of the variance so that marginal and conditional residuals have similar expressions.
In other words, scale and overdispersion parameters are included.
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When residuals or predicted values involve only the fixed effects part of the linear predictor (that is,b�m D
x0b̌), then all model quantities are computed based on this predictor. For example, if the variance by which
to standardize a marginal residual involves the variance function, then the variance function is also evaluated
at the marginal mean, g�1.b�m/. Thus the residuals p�b� and pm�b�m can also be expressed as .y��/=@�
and .y��m/=@�m, respectively, where @� is the derivative with respect to the linear predictor. To construct
the residual p �b�m in a GLMM, you can add the value of _ZGAMMA_ to the conditional residual p �b�.
(The residual p�b�m is computed instead of the default marginal residual when you specify the CPSEUDO
option in the OUTPUT statement.) If the predictor involves the BLUPs, then all relevant expressions and
evaluations involve the conditional mean g�1.b�/.
The naming convention to add “PA” to quantities not involving the BLUPs is chosen to suggest the concept of
a population average. When the link function is nonlinear, these are not truly population-averaged quantities,
because g�1.x0ˇ/ does not equal EŒY � in the presence of random effects. For example, if

�i D g
�1.x0iˇ C z0i
i /

is the conditional mean for subject i, then

g�1.x0ib̌/
does not estimate the average response in the population of subjects but the response of the average subject
(the subject for which 
i D 0). For models with identity link, the average response and the response of the
average subject are identical.

The GLIMMIX procedure obtains standard errors on the scale of the mean by the delta method. If the link
is a nonlinear function of the linear predictor, these standard errors are only approximate. For example,

VarŒg�1.b�m/� :D �@g�1.t/
@t jb�m

�2
VarŒb�m�

Confidence limits on the scale of the data are usually computed by applying the inverse link function to
the confidence limits on the linked scale. The resulting limits on the data scale have the same coverage
probability as the limits on the linked scale, but they are possibly asymmetric.

In generalized logit models, confidence limits on the mean scale are based on symmetric limits about the
predicted mean in a category. Suppose that the multinomial response in such a model has J categories. The
probability of a response in category i is computed as

b�i D exp fb�igPJ
jD1 exp fb�ig

The variance of b�i is then approximated as

VarŒb�i � :D � D �0iVar
� b�1 b�2 � � � b�J �

�i

where �i is a J � 1 vector with kth elementb�i .1 �b�i / i D k

�b�ib�k i 6D k

The confidence limits in the generalized logit model are then obtained as

b�i ˙ t�;˛=2p�
where t�;˛=2 is the 100 � .1 � ˛=2/ percentile from a t distribution with � degrees of freedom. Confidence
limits are truncated if they fall outside the Œ0; 1� interval.
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ODS Table Names
Each table created by PROC GLIMMIX has a name associated with it, and you must use this name to
reference the table when you use ODS statements. These names are listed in Table 41.23.

Table 41.23 ODS Tables Produced by PROC GLIMMIX

Table Name Description Required Statement / Option

AsyCorr asymptotic correlation matrix of co-
variance parameters

PROC GLIMMIX ASYCORR

AsyCov asymptotic covariance matrix of co-
variance parameters

PROC GLIMMIX ASYCOV

CholG Cholesky root of the estimated G
matrix

RANDOM / GC

CholV Cholesky root of blocks of the esti-
mated V matrix

RANDOM / VC

ClassLevels level information from the CLASS
statement

default output

Coef L matrix coefficients E option in MODEL, CONTRAST,
ESTIMATE, LSMESTIMATE, or
LSMEANS; ELSM option in LS-
MESTIMATE

ColumnNames name association for OUTDESIGN
data set

PROC GLIMMIX
OUTDESIGN(NAMES)

CondFitStatistics conditional fit statistics PROC GLIMMIX
METHOD=LAPLACE

Contrasts results from the CONTRAST state-
ments

CONTRAST

ConvergenceStatus status of optimization at conclusion default output
CorrB approximate correlation matrix of

fixed-effects parameter estimates
MODEL / CORRB

CovB approximate covariance matrix of
fixed-effects parameter estimates

MODEL / COVB

CovBDetails details about model-based and/or
adjusted covariance matrix of fixed
effects

MODEL / COVB(DETAILS)

CovBI inverse of approximate covariance
matrix of fixed-effects parameter es-
timates

MODEL / COVBI

CovBModelBased model-based (unadjusted) covari-
ance matrix of fixed effects if
DDFM=KR or EMPIRICAL option
is used

MODEL / COVB(DETAILS)

CovParms estimated covariance parameters in
GLMMs

default output (in GLMMs)

CovTests results from COVTEST statements
(except for confidence bounds)

COVTEST



3114 F Chapter 41: The GLIMMIX Procedure

Table 41.23 continued

Table Name Description Required Statement / Option

Diffs differences of LS-means LSMEANS / DIFF (or PDIFF)
Dimensions dimensions of the model default output
Estimates results from ESTIMATE statements ESTIMATE
FitStatistics fit statistics default
G estimated G matrix RANDOM / G
GCorr correlation matrix from the esti-

mated G matrix
RANDOM / GCORR

Hessian Hessian matrix (observed or ex-
pected)

PROC GLIMMIX HESSIAN

InvCholG inverse Cholesky root of the esti-
mated G matrix

RANDOM / GCI

InvCholV inverse Cholesky root of the blocks
of the estimated V matrix

RANDOM / VCI

InvG inverse of the estimated G matrix RANDOM / GI
InvV inverse of blocks of the estimated V

matrix
RANDOM / VI

IterHistory iteration history default output
kdTree k-d tree information RANDOM / TYPE=RSMOOTH

KNOTMETHOD=
KDTREE(TREEINFO)

KnotInfo knot coordinates of low-rank spline
smoother

RANDOM / TYPE=RSMOOTH
KNOTINFO

LSMeans LS-means LSMEANS
LSMEstimates estimates among LS-means LSMESTIMATE
LSMFtest F test for LSMESTIMATEs LSMESTIMATE / FTEST
LSMLines lines display for LS-means LSMEANS / LINES
ModelInfo model information default output
NObs number of observations read and

used, number of trials and events
default output

OddsRatios odds ratios of parameter estimates MODEL / ODDSRATIO
OptInfo optimization information default output
ParameterEstimates fixed-effects solution; overdisper-

sion and scale parameter in GLMs
MODEL / S

ParmSearch parameter search values PARMS
QuadCheck adaptive recalculation of quadrature

approximation at solution
METHOD=QUAD(QCHECK)

ResponseProfile response categories and category
modeled

default output in models with binary
or nominal response

Slices tests of LS-means slices LSMEANS / SLICE=
SliceDiffs differences of simple LS-means ef-

fects
LSMEANS / SLICEDIFF=

SolutionR random-effects solution vector RANDOM / S
StandardizedCoefficients fixed-effects solutions from centered

and/or scaled model
MODEL / STDCOEF

Tests1 Type I tests of fixed effects MODEL / HTYPE=1
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Table 41.23 continued

Table Name Description Required Statement / Option

Tests2 Type II tests of fixed effects MODEL / HTYPE=2
Tests3 Type III tests of fixed effects default output
V blocks of the estimated V matrix RANDOM / V
VCorr correlation matrix from the blocks of

the estimated V matrix
RANDOM / VCORR

The SLICE statement also creates tables, which are not listed in Table 41.23. For information about these
tables, see the section “SLICE Statement” on page 498 of Chapter 19, “Shared Concepts and Topics.”

ODS Graphics
Statistical procedures use ODS Graphics to create graphs as part of their output. ODS Graphics is described
in detail in Chapter 21, “Statistical Graphics Using ODS.”

Before you create graphs, ODS Graphics must be enabled (for example, by specifying the ODS GRAPHICS
ON statement). For more information about enabling and disabling ODS Graphics, see the section “Enabling
and Disabling ODS Graphics” on page 600 in Chapter 21, “Statistical Graphics Using ODS.”

The overall appearance of graphs is controlled by ODS styles. Styles and other aspects of using ODS
Graphics are discussed in the section “A Primer on ODS Statistical Graphics” on page 599 in Chapter 21,
“Statistical Graphics Using ODS.”

The following subsections provide information about the basic ODS statistical graphics produced by the
GLIMMIX procedure. The graphics fall roughly into two categories: diagnostic plots and graphics for least
squares means.

ODS Graph Names

The GLIMMIX procedure does not produce graphs by default. You can reference every graph produced
through ODS Graphics with a name. The names of the graphs that PROC GLIMMIX generates are listed in
Table 41.24, along with the required statements and options.

Table 41.24 Graphs Produced by PROC GLIMMIX

ODS Graph Name Plot Description Option

AnomPlot Plot of LS-mean differences
against the average LS-
mean

PLOTS=ANOMPLOT
LSMEANS / PLOTS=ANOMPLOT

Boxplot Box plots of residuals
and/or observed values for
model effects

PLOTS=BOXPLOT

ControlPlot Plot of LS-mean differences
against a control level

PLOTS=CONTROLPLOT
LSMEANS / PLOTS=CONTROLPLOT

DiffPlot Plot of LS-mean pairwise
differences

PLOTS=DIFFPLOT
LSMEANS / PLOTS=DIFFPLOT
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Table 41.24 continued

ODS Graph Name Plot Description Option

MeanPlot Plot of least squares means PLOTS=MEANPLOT
LSMEANS / PLOTS=MEANPLOT

ORPlot Plot of odds ratios PLOTS=ODDSRATIO

PearsonBoxplot Box plot of Pearson residu-
als

PLOTS=PEARSONPANEL(UNPACK)

PearsonByPredicted Pearson residuals vs. mean PLOTS=PEARSONPANEL(UNPACK)

PearsonHistogram Histogram of Pearson resid-
uals

PLOTS=PEARSONPANEL(UNPACK)

PearsonPanel Panel of Pearson residuals PLOTS=PEARSONPANEL

PearsonQQplot Q-Q plot of Pearson residu-
als

PLOTS=PEARSONPANEL(UNPACK)

ResidualBoxplot Box plot of (raw) residuals PLOTS=RESIDUALPANEL(UNPACK)

ResidualByPredicted Residuals vs. mean or linear
predictor

PLOTS=RESIDUALPANEL(UNPACK)

ResidualHistogram Histogram of (raw) residu-
als

PLOTS=RESIDUALPANEL(UNPACK)

ResidualPanel Panel of (raw) residuals PLOTS=RESIDUALPANEL

ResidualQQplot Q-Q plot of (raw) residuals PLOTS=RESIDUALPANEL(UNPACK)

StudentBoxplot Box plot of studentized
residuals

PLOTS=STUDENTPANEL(UNPACK)

StudentByPredicted Studentized residuals vs.
mean or linear predictor

PLOTS=STUDENTPANEL(UNPACK)

StudentHistogram Histogram of studentized
residuals

PLOTS=STUDENTPANEL(UNPACK)

StudentPanel Panel of studentized residu-
als

PLOTS=STUDENTPANEL

StudentQQplot Q-Q plot of studentized
residuals

PLOTS=STUDENTPANEL(UNPACK)

When ODS Graphics is enabled, the SLICE statement can produce plots that are associated with
its analysis. For information about these plots, see the section “SLICE Statement” on page 498 of
Chapter 19, “Shared Concepts and Topics.”
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Diagnostic Plots

Residual Panels
There are three types of residual panels in the GLIMMIX procedure. Their makeup of four component plots
is the same; the difference lies in the type of residual from which the panel is computed. Raw residuals
are displayed with the PLOTS=RESIDUALPANEL option. Studentized residuals are displayed with the
PLOTS=STUDENTPANEL option, and Pearson residuals with the PLOTS=PEARSONPANEL option. By
default, conditional residuals are used in the construction of the panels if the model contains G-side random
effects. For example, consider the following statements:

proc glimmix plots=residualpanel;
class A;
model y = x1 x2 / dist=Poisson;
random int / sub=A;

run;

The parameters are estimated by a pseudo-likelihood method, and at the final stage pseudo-data are related
to a linear mixed model with random intercepts. The residual panel is constructed from

r D p � x0b̌C z0b

where p is the pseudo-data.

The following hypothetical data set contains yields of an industrial process. Material was available from
five randomly selected vendors to produce a chemical reaction whose yield depends on two factors (pressure
and temperature at 3 and 2 levels, respectively).

data Yields;
input Vendor Pressure Temp Yield @@;
datalines;

1 1 1 10.20 1 1 2 9.48 1 2 1 9.74
1 2 2 8.92 1 3 1 11.79 1 3 2 8.85
2 1 1 10.43 2 1 2 10.59 2 2 1 10.29
2 2 2 10.15 2 3 1 11.12 2 3 2 9.30
3 1 1 6.46 3 1 2 7.34 3 2 1 9.44
3 2 2 8.11 3 3 1 9.38 3 3 2 8.37
4 1 1 7.36 4 1 2 9.92 4 2 1 10.99
4 2 2 10.34 4 3 1 10.24 4 3 2 9.96
5 1 1 11.72 5 1 2 10.60 5 2 1 11.28
5 2 2 9.03 5 3 1 14.09 5 3 2 8.92

;

Consider a linear mixed model with a two-way factorial fixed-effects structure for pressure and temperature
effects and independent, homoscedastic random effects for the vendors. The following statements fit this
model and request panels of marginal and conditional residuals:
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ods graphics on;

proc glimmix data=Yields
plots=residualpanel(conditional marginal);

class Vendor Pressure Temp;
model Yield = Pressure Temp Pressure*Temp;
random vendor;

run;

ods graphics off;

The suboptions of the RESIDUALPANEL request produce two panels. The panel of conditional residuals is
constructed from y�x0b̌� z0b
 (Figure 41.19). The panel of marginal residuals is constructed from y�x0b̌
(Figure 41.20). Note that these residuals are deviations from the observed data, because the model is a
normal linear mixed model, and hence it does not involve pseudo-data. Whenever the random-effects solu-
tionsb
 are involved in constructing residuals, the title of the residual graphics identifies them as conditional
residuals (Figure 41.19).

Figure 41.19 Conditional Residuals
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Figure 41.20 Marginal Residuals

The predictor takes on only six values for the marginal residuals, corresponding to the combinations of
three temperature and two pressure levels. The assumption of a zero mean for the vendor random effect
seems justified; the marginal residuals in the upper-left plot of Figure 41.20 do not exhibit any trend. The
conditional residuals in Figure 41.19 are smaller and somewhat closer to normality compared to the marginal
residuals.

Box Plots
You can produce box plots of observed data, pseudo-data, and various residuals for effects in your model
that consist of classification variables. Because you might not want to produce box plots for all such effects,
you can request subsets with the suboptions of the BOXPLOT option in the PLOTS option. The BOXPLOT
request in the following PROC GLIMMIX statement produces box plots for the random effects—in this
case, the vendor effect. By default, PROC GLIMMIX constructs box plots from conditional residuals.
The MARGINAL, CONDITIONAL, and OBSERVED suboptions instruct the procedure to construct three
box plots for each random effect: box plots of the observed data (Figure 41.21), the marginal residuals
(Figure 41.22), and the conditional residuals (Figure 41.23).
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ods graphics on;

proc glimmix data=Yields
plots=boxplot(random marginal conditional observed);

class Vendor Pressure Temp;
model Yield = Pressure Temp Pressure*Temp;
random vendor;

run;

ods graphics off;

The observed vendor means in Figure 41.21 are different; in particular, vendors 3 and 5 appear to differ
from the other vendors and from each other. There is also heterogeneity of variance in the five groups. The
marginal residuals in Figure 41.22 continue to show the differences in means by vendor, because vendor
enters the model as a random effect. The marginal means are adjusted for vendor effects only in the sense
that the vendor variance component affects the marginal variance that is involved in the generalized least
squares solution for the pressure and temperature effects.

Figure 41.21 Box Plots of Observed Values
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Figure 41.22 Box Plots of Marginal Residuals

The conditional residuals account for the vendor effects through the empirical BLUPs. The means and
medians have stabilized near zero, but some heterogeneity in these residuals remains (Figure 41.23).
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Figure 41.23 Box Plots of Conditional Residuals

Graphics for LS-Mean Comparisons

The following subsections provide information about the ODS statistical graphics for least squares means
produced by the GLIMMIX procedure. Mean plots display marginal or interaction means. The diffogram,
control plot, and ANOM plot display least squares mean comparisons.

Mean Plots
The following SAS statements request a plot of the Pressure�Temp means in which the pressure trends are
plotted for each temperature.
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ods graphics on;
ods select CovParms Tests3 MeanPlot;
proc glimmix data=Yields;

class Vendor Pressure Temp;
model Yield = Pressure Temp Pressure*Temp;
random Vendor;
lsmeans Pressure*Temp / plot=mean(sliceby=Temp join);

run;
ods graphics off;

There is a significant effect of temperature and an interaction between pressure and temperature (Fig-
ure 41.24). Notice that the pressure main effect might be masked by the interaction. Because of the
interaction, temperature comparisons depend on the pressure and vice versa. The mean plot option re-
quests a display of the Pressure � Temp least squares means with separate trends for each temperature
(Figure 41.25).

Figure 41.24 Tests for Fixed Effects

The GLIMMIX Procedure

Covariance Parameter Estimates

Standard
Cov Parm Estimate Error

Vendor 0.8602 0.7406
Residual 1.1039 0.3491

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

Pressure 2 20 1.42 0.2646
Temp 1 20 6.48 0.0193
Pressure*Temp 2 20 3.82 0.0393

The interaction between the two effects is evident in the lack of parallelism in Figure 41.25. The masking
of the pressure main effect can be explained by slopes of different sign for the two trends. Based on
these results, inferences about the pressure effects are conducted for a specific temperature. For example,
Figure 41.26 is produced by adding the following statement:

lsmeans pressure*temp / slicediff=temp slice=temp;
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Figure 41.25 Interaction Plot for Pressure x Temperature
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Figure 41.26 Pressure Comparisons at a Given Temperature

The GLIMMIX Procedure

Tests of Effect Slices for Pressure*Temp
Sliced By Temp

Num Den
Temp DF DF F Value Pr > F

1 2 20 4.95 0.0179
2 2 20 0.29 0.7508

Simple Effect Comparisons of Pressure*Temp Least Squares Means By Temp

Simple
Effect Standard
Level Pressure _Pressure Estimate Error DF t Value Pr > |t|

Temp 1 1 2 -1.1140 0.6645 20 -1.68 0.1092
Temp 1 1 3 -2.0900 0.6645 20 -3.15 0.0051
Temp 1 2 3 -0.9760 0.6645 20 -1.47 0.1575
Temp 2 1 2 0.2760 0.6645 20 0.42 0.6823
Temp 2 1 3 0.5060 0.6645 20 0.76 0.4553
Temp 2 2 3 0.2300 0.6645 20 0.35 0.7329

The slope differences are evident by the change in sign for comparisons within temperature 1 and within
temperature 2. There is a significant effect of pressure at temperature 1 (p = 0.0179), but not at temperature
2 (p = 0.7508).

Pairwise Difference Plot (Diffogram)
Graphical displays of LS-means-related analyses consist of plots of all pairwise differences (DiffPlot), plots
of differences against a control level (ControlPlot), and plots of differences against an overall average
(AnomPlot). The following data set is from an experiment to investigate how snapdragons grow in var-
ious soils (Stenstrom 1940). To eliminate the effect of local fertility variations, the experiment is run in
blocks, with each soil type sampled in each block. See the “Examples” section of Chapter 42, “The GLM
Procedure,” for an in-depth analysis of these data.
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data plants;
input Type $ @;
do Block = 1 to 3;

input StemLength @;
output;

end;
datalines;

Clarion 32.7 32.3 31.5
Clinton 32.1 29.7 29.1
Knox 35.7 35.9 33.1
ONeill 36.0 34.2 31.2
Compost 31.8 28.0 29.2
Wabash 38.2 37.8 31.9
Webster 32.5 31.1 29.7
;

The following statements perform the analysis of the experiment with the GLIMMIX procedure:

ods graphics on;
ods select LSMeans DiffPlot;

proc glimmix data=plants order=data plots=Diffogram;
class Block Type;
model StemLength = Block Type;
lsmeans Type;

run;

ods graphics off;

The PLOTS= option in the PROC GLIMMIX statement requests that plots of pairwise least squares means
differences are produced for effects that are listed in corresponding LSMEANS statements. This is the Type
effect.

The Type LS-means are shown in Figure 41.27. Note that the order in which the levels appear corresponds
to the order in which they were read from the data set. This was accomplished with the ORDER=DATA
option in the PROC GLIMMIX statement.

Figure 41.27 Least Squares Means for Type Effect

The GLIMMIX Procedure

Type Least Squares Means

Standard
Type Estimate Error DF t Value Pr > |t|

Clarion 32.1667 0.7405 12 43.44 <.0001
Clinton 30.3000 0.7405 12 40.92 <.0001
Knox 34.9000 0.7405 12 47.13 <.0001
ONeill 33.8000 0.7405 12 45.64 <.0001
Compost 29.6667 0.7405 12 40.06 <.0001
Wabash 35.9667 0.7405 12 48.57 <.0001
Webster 31.1000 0.7405 12 42.00 <.0001
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Because there are seven levels of Type in this analysis, there are 7.6 � 1/=2 D 21 pairwise comparisons
among the least squares means. The comparisons are performed in the following fashion: the first level of
Type is compared against levels 2 through 7; the second level of Type is compared against levels 3 through
7; and so forth.

The default difference plot for these data is shown in Figure 41.28. The display is also known as a “mean-
mean scatter plot” (Hsu 1996; Hsu and Peruggia 1994). It contains 21 lines rotated by 45 degrees coun-
terclockwise, and a reference line (dashed 45-degree line). The .x; y/ coordinate for the center of each
line corresponds to the two least squares means being compared. Suppose thatb�:i andb�:j denote the ith
and jth least squares mean, respectively, for the effect in question, where i < j according to the ordering
of the effect levels. If the ABS option is in effect, which is the default, the line segment is centered at
.minfb�i:;b�j:g;maxfb�i:;b�j:g/. Take, for example, the comparison of “Clarion” and “Compost” types. The
respective estimates of their LS-means are b�:1 D 32:1667 and b�:5 D 29:6667. The center of the line
segment for H0W �:1 D �:5 is placed at .29:6667; 32:1667/.

The length of the line segment for the comparison between means i and j corresponds to the width of the
confidence interval for the difference �:i � �:j . This length is adjusted for the rotation in the plot. As a
consequence, comparisons whose confidence interval covers zero cross the 45-degree reference line. These
are the nonsignificant comparisons. Lines associated with significant comparisons do not touch or cross the
reference line. Because these data are balanced, the estimated standard errors of all pairwise comparisons
are identical, and the widths of the line segments are the same.

Figure 41.28 LS-Means Plot of Pairwise Differences
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The background grid of the difference plot is drawn at the values of the least squares means for the seven
type levels. These grid lines are used to find a particular comparison by intersection. Also, the labels of the
grid lines indicate the ordering of the least squares means.

In the next set of statements, the NOABS and CENTER suboptions of the PLOTS=DIFFOGRAM option in
the LSMEANS statement modify the appearance of the diffogram:

ods graphics on;
proc glimmix data=plants order=data;

class Block Type;
model StemLength = Block Type;
lsmeans Type / plots=diffogram(noabs center);

run;
ods graphics off;

The NOABS suboption of the difference plot changes the way in which the GLIMMIX procedure places the
line segments (Figure 41.29). If the NOABS suboption is in effect, the line segment is centered at the point
.b�:i ;b�:j /, i < j . For example, the center of the line segment for a comparison of “Clarion” and “Compost”
types is centered at .b�:1;b�:5/ D .32:1667; 29:6667/. Whether a line segment appears above or below the
reference line depends on the magnitude of the least squares means and the order of their appearance in
the “Least Squares Means” table. The CENTER suboption places a marker at the intersection of the least
squares means.

Because the ABS option places lines on the same side of the 45-degree reference, it can help to visually
discover groups of significant and nonsignificant differences. On the other hand, when the number of levels
in the effect is large, the display can get crowded. The NOABS option can then provide a more accessible
resolution.
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Figure 41.29 Diffogram with NOABS and CENTER Options
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Least Squares Mean Control Plot
The following SAS statements create the same data set as before, except that one observation for
Type=“Knox” has been removed for illustrative purposes:

data plants;
input Type $ @;
do Block = 1 to 3;

input StemLength @;
output;

end;
datalines;

Clarion 32.7 32.3 31.5
Clinton 32.1 29.7 29.1
Knox 35.7 35.9 .
ONeill 36.0 34.2 31.2
Compost 31.8 28.0 29.2
Wabash 38.2 37.8 31.9
Webster 32.5 31.1 29.7
;

The following statements request control plots for effects in LSMEANS statements with compatible option:

ods graphics on;
ods select Diffs ControlPlot;

proc glimmix data=plants order=data plots=ControlPlot;
class Block Type;
model StemLength = Block Type;
lsmeans Type / diff=control('Clarion') adjust=dunnett;

run;

ods graphics off;

The LSMEANS statement for the Type effect is compatible; it requests comparisons of Type levels against
“Clarion,” adjusted for multiplicity with Dunnett’s method. Because “Clarion” is the first level of the effect,
the LSMEANS statement is equivalent to

lsmeans type / diff=control adjust=dunnett;

The “Differences of Type Least Squares Means” table in Figure 41.30 shows the six comparisons between
Type levels and the control level.
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Figure 41.30 Least Squares Means Differences

The GLIMMIX Procedure

Differences of Type Least Squares Means
Adjustment for Multiple Comparisons: Dunnett

Standard
Type _Type Estimate Error DF t Value Pr > |t| Adj P

Clinton Clarion -1.8667 1.0937 11 -1.71 0.1159 0.3936
Knox Clarion 2.7667 1.2430 11 2.23 0.0479 0.1854
ONeill Clarion 1.6333 1.0937 11 1.49 0.1635 0.5144
Compost Clarion -2.5000 1.0937 11 -2.29 0.0431 0.1688
Wabash Clarion 3.8000 1.0937 11 3.47 0.0052 0.0236
Webster Clarion -1.0667 1.0937 11 -0.98 0.3504 0.8359

The two rightmost columns of the table give the unadjusted and multiplicity-adjusted p-values. At the 5%
significance level, both “Knox” and “Wabash” differ significantly from “Clarion” according to the unad-
justed tests. After adjusting for multiplicity, only “Wabash” has a least squares mean significantly different
from the control mean. Note that the standard error for the comparison involving “Knox” is larger than that
for other comparisons because of the reduced sample size for that soil type.

In the plot of control differences a horizontal line is drawn at the value of the “Clarion” least squares mean.
Vertical lines emanating from this reference line terminate in the least squares means for the other levels
(Figure 41.31).

The dashed upper and lower horizontal reference lines are the upper and lower decision limits for tests
against the control level. If a vertical line crosses the upper or lower decision limit, the corresponding least
squares mean is significantly different from the LS-mean in the control group. If the data had been balanced,
the UDL and LDL would be straight lines, because all estimatesb�:i �b�:j would have had the same standard
error. The limits for the comparison between “Knox” and “Clarion” are wider than for other comparisons,
because of the reduced sample size for the “Knox” soil type.
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Figure 41.31 LS-Means Plot of Differences against a Control
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The significance level of the decision limits is determined from the ALPHA= level in the LSMEANS
statement. The default are 95% limits. If you choose one-sided comparisons with DIFF=CONTROLL
or DIFF=CONTROLU in the LSMEANS statement, only one of the decision limits is drawn.

Analysis of Means (ANOM) Plot
The analysis of means in PROC GLIMMIX compares least squares means not by contrasting them against
each other as with all pairwise differences or control differences. Instead, the least squares means are
compared against an average value. Consequently, there are k comparisons for a factor with k levels. The
following statements request ANOM differences for the Type least squares means (Figure 41.32) and plots
the differences (Figure 41.33):

ods graphics on;
ods select Diffs AnomPlot;
proc glimmix data=plants order=data plots=AnomPlot;

class Block Type;
model StemLength = Block Type;
lsmeans Type / diff=anom;

run;
ods graphics off;

Figure 41.32 ANOM LS-Mean Differences

The GLIMMIX Procedure

Differences of Type Least Squares Means

Standard
Type _Type Estimate Error DF t Value Pr > |t|

Clarion Avg -0.2635 0.7127 11 -0.37 0.7186
Clinton Avg -2.1302 0.7127 11 -2.99 0.0123
Knox Avg 2.5032 0.9256 11 2.70 0.0205
ONeill Avg 1.3698 0.7127 11 1.92 0.0809
Compost Avg -2.7635 0.7127 11 -3.88 0.0026
Wabash Avg 3.5365 0.7127 11 4.96 0.0004
Webster Avg -1.3302 0.7127 11 -1.87 0.0888

At the 5% level, the “Clarion,” “O’Neill,” and “Webster” soil types are not significantly different from the
average. Note that the artificial lack of balance introduced previously reduces the precision of the ANOM
comparison for the “Knox” soil type.
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Figure 41.33 LS-Means Analysis of Means (ANOM) Plot

The reference line in the ANOM plot is drawn at the average. Vertical lines extend from this reference line
upward or downward, depending on the magnitude of the least squares means compared to the reference
value. This enables you to quickly see which levels perform above and below the average. The horizontal
reference lines are 95% upper and lower decision limits. If a vertical line crosses the limits, you conclude
that the least squares mean is significantly different (at the 5% significance level) from the average. You
can adjust the comparisons for multiplicity by adding the ADJUST=NELSON option in the LSMEANS
statement.
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Examples: GLIMMIX Procedure

Example 41.1: Binomial Counts in Randomized Blocks
In the context of spatial prediction in generalized linear models, Gotway and Stroup (1997) analyze data
from an agronomic field trial. Researchers studied 16 varieties (entries) of wheat for their resistance to
infestation by the Hessian fly. They arranged the varieties in a randomized complete block design on an
8 � 8 grid. Each 4 � 4 quadrant of that arrangement constitutes a block.

The outcome of interest was the number of damaged plants (Yij ) out of the total number of plants growing
on the unit (nij ). The two subscripts identify the block (i D 1; � � � ; 4) and the entry (j D 1; � � � ; 16).
The following SAS statements create the data set. The variables lat and lng denote the coordinate of an
experimental unit on the 8 � 8 grid.

data HessianFly;
label Y = 'No. of damaged plants'

n = 'No. of plants';
input block entry lat lng n Y @@;
datalines;
1 14 1 1 8 2 1 16 1 2 9 1
1 7 1 3 13 9 1 6 1 4 9 9
1 13 2 1 9 2 1 15 2 2 14 7
1 8 2 3 8 6 1 5 2 4 11 8
1 11 3 1 12 7 1 12 3 2 11 8
1 2 3 3 10 8 1 3 3 4 12 5
1 10 4 1 9 7 1 9 4 2 15 8
1 4 4 3 19 6 1 1 4 4 8 7
2 15 5 1 15 6 2 3 5 2 11 9
2 10 5 3 12 5 2 2 5 4 9 9
2 11 6 1 20 10 2 7 6 2 10 8
2 14 6 3 12 4 2 6 6 4 10 7
2 5 7 1 8 8 2 13 7 2 6 0
2 12 7 3 9 2 2 16 7 4 9 0
2 9 8 1 14 9 2 1 8 2 13 12
2 8 8 3 12 3 2 4 8 4 14 7
3 7 1 5 7 7 3 13 1 6 7 0
3 8 1 7 13 3 3 14 1 8 9 0
3 4 2 5 15 11 3 10 2 6 9 7
3 3 2 7 15 11 3 9 2 8 13 5
3 6 3 5 16 9 3 1 3 6 8 8
3 15 3 7 7 0 3 12 3 8 12 8
3 11 4 5 8 1 3 16 4 6 15 1
3 5 4 7 12 7 3 2 4 8 16 12
4 9 5 5 15 8 4 4 5 6 10 6
4 12 5 7 13 5 4 1 5 8 15 9
4 15 6 5 17 6 4 6 6 6 8 2
4 14 6 7 12 5 4 7 6 8 15 8
4 13 7 5 13 2 4 8 7 6 13 9
4 3 7 7 9 9 4 10 7 8 6 6
4 2 8 5 12 8 4 11 8 6 9 7
4 5 8 7 11 10 4 16 8 8 15 7

;
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Analysis as a GLM

If infestations are independent among experimental units, and all plants within a unit have the same propen-
sity for infestation, then the Yij are binomial random variables. The first model considered is a standard
generalized linear model for independent binomial counts:

proc glimmix data=HessianFly;
class block entry;
model y/n = block entry / solution;

run;

The PROC GLIMMIX statement invokes the procedure. The CLASS statement instructs the GLIMMIX
procedure to treat both block and entry as classification variables. The MODEL statement specifies the
response variable and the fixed effects in the model. PROC GLIMMIX constructs the X matrix of the model
from the terms on the right side of the MODEL statement. The GLIMMIX procedure supports two kinds of
syntax for the response variable. This example uses the events/trials syntax. The variable y represents the
number of successes (events) out of n Bernoulli trials. When the events/trials syntax is used, the GLIMMIX
procedure automatically selects the binomial distribution as the response distribution. Once the distribution
is determined, the procedure selects the link function for the model. The default link for binomial data is
the logit link. The preceding statements are thus equivalent to the following statements:

proc glimmix data=HessianFly;
class block entry;
model y/n = block entry / dist=binomial link=logit solution;

run;

The SOLUTION option in the MODEL statement requests that solutions for the fixed effects (parameter
estimates) be displayed.

The “Model Information” table describes the model and methods used in fitting the statistical model (Out-
put 41.1.1).

The GLIMMIX procedure recognizes that this is a model for uncorrelated data (variance matrix is diagonal)
and that parameters can be estimated by maximum likelihood. The default degrees-of-freedom method to
denominator degrees of freedom for F tests and t tests is the RESIDUAL method. This corresponds to
choosing f � rank.X/ as the degrees of freedom, where f is the sum of the frequencies used in the analysis.
You can change the degrees of freedom method with the DDFM= option in the MODEL statement.

Output 41.1.1 Model Information in GLM Analysis

The GLIMMIX Procedure

Model Information

Data Set WORK.HESSIANFLY
Response Variable (Events) Y
Response Variable (Trials) n
Response Distribution Binomial
Link Function Logit
Variance Function Default
Variance Matrix Diagonal
Estimation Technique Maximum Likelihood
Degrees of Freedom Method Residual
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The “Class Level Information” table lists the levels of the variables specified in the CLASS statement and
the ordering of the levels (Output 41.1.2). The “Number of Observations” table displays the number of
observations read and used in the analysis.

Output 41.1.2 Class Level Information and Number of Observations

Class Level Information

Class Levels Values

block 4 1 2 3 4
entry 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Observations Read 64
Number of Observations Used 64
Number of Events 396
Number of Trials 736

The “Dimensions” table lists the size of relevant matrices (Output 41.1.3).

Output 41.1.3 Model Dimensions Information in GLM Analysis

Dimensions

Columns in X 21
Columns in Z 0
Subjects (Blocks in V) 1
Max Obs per Subject 64

Because of the absence of G-side random effects in this model, there are no columns in the Z matrix. The 21
columns in the X matrix comprise the intercept, 4 columns for the block effect and 16 columns for the entry
effect. Because no RANDOM statement with a SUBJECT= option was specified, the GLIMMIX procedure
does not process the data by subjects (see the section “Processing by Subjects” on page 3082 for details
about subject processing).

The “Optimization Information” table provides information about the methods and size of the optimization
problem (Output 41.1.4).

Output 41.1.4 Optimization Information in GLM Analysis

Optimization Information

Optimization Technique Newton-Raphson
Parameters in Optimization 19
Lower Boundaries 0
Upper Boundaries 0
Fixed Effects Not Profiled
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With few exceptions, models fit with the GLIMMIX procedure require numerical methods for parameter
estimation. The default optimization method for (overdispersed) GLM models is the Newton-Raphson
algorithm. In this example, the optimization involves 19 parameters, corresponding to the number of linearly
independent columns of the X0X matrix.

The “Iteration History” table shows that the procedure converged after 3 iterations and 13 function evalu-
ations (Output 41.1.5). The Change column measures the change in the objective function between itera-
tions; however, this is not the monitored convergence criterion. The GLIMMIX procedure monitors several
features simultaneously to determine whether to stop an optimization.

Output 41.1.5 Iteration History in GLM Analysis

Iteration History

Objective Max
Iteration Restarts Evaluations Function Change Gradient

0 0 4 134.13393738 . 4.899609
1 0 3 132.85058236 1.28335502 0.206204
2 0 3 132.84724263 0.00333973 0.000698
3 0 3 132.84724254 0.00000009 3.029E-8

Convergence criterion (GCONV=1E-8) satisfied.

The “Fit Statistics” table lists information about the fitted model (Output 41.1.6). The –2 Log Likelihood
values are useful for comparing nested models, and the information criteria AIC, AICC, BIC, CAIC, and
HQIC are useful for comparing nonnested models. On average, the ratio between the Pearson statistic and
its degrees of freedom should equal one in GLMs. Values larger than one indicate overdispersion. With a
ratio of 2.37, these data appear to exhibit more dispersion than expected under a binomial model with block
and varietal effects.

Output 41.1.6 Fit Statistics in GLM Analysis

Fit Statistics

-2 Log Likelihood 265.69
AIC (smaller is better) 303.69
AICC (smaller is better) 320.97
BIC (smaller is better) 344.71
CAIC (smaller is better) 363.71
HQIC (smaller is better) 319.85
Pearson Chi-Square 106.74
Pearson Chi-Square / DF 2.37

The “Parameter Estimates” table displays the maximum likelihood estimates (Estimate), standard errors,
and t tests for the hypothesis that the estimate is zero (Output 41.1.7).
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Output 41.1.7 Parameter Estimates in GLM Analysis

Parameter Estimates

Standard
Effect block entry Estimate Error DF t Value Pr > |t|

Intercept -1.2936 0.3908 45 -3.31 0.0018
block 1 -0.05776 0.2332 45 -0.25 0.8055
block 2 -0.1838 0.2303 45 -0.80 0.4289
block 3 -0.4420 0.2328 45 -1.90 0.0640
block 4 0 . . . .
entry 1 2.9509 0.5397 45 5.47 <.0001
entry 2 2.8098 0.5158 45 5.45 <.0001
entry 3 2.4608 0.4956 45 4.97 <.0001
entry 4 1.5404 0.4564 45 3.38 0.0015
entry 5 2.7784 0.5293 45 5.25 <.0001
entry 6 2.0403 0.4889 45 4.17 0.0001
entry 7 2.3253 0.4966 45 4.68 <.0001
entry 8 1.3006 0.4754 45 2.74 0.0089
entry 9 1.5605 0.4569 45 3.42 0.0014
entry 10 2.3058 0.5203 45 4.43 <.0001
entry 11 1.4957 0.4710 45 3.18 0.0027
entry 12 1.5068 0.4767 45 3.16 0.0028
entry 13 -0.6296 0.6488 45 -0.97 0.3370
entry 14 0.4460 0.5126 45 0.87 0.3889
entry 15 0.8342 0.4698 45 1.78 0.0826
entry 16 0 . . . .

The “Type III Tests of Fixed Effect” table displays significance tests for the two fixed effects in the model
(Output 41.1.8).

Output 41.1.8 Type III Tests of Block and Entry Effects in GLM Analysis

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

block 3 45 1.42 0.2503
entry 15 45 6.96 <.0001

These tests are Wald-type tests, not likelihood ratio tests. The entry effect is clearly significant in this model
with a p-value of <0.0001, indicating that the 16 wheat varieties are not equally susceptible to infestation by
the Hessian fly.

Analysis with Random Block Effects

There are several possible reasons for the overdispersion noted in Output 41.1.6 (Pearson ratio = 2.37). The
data might not follow a binomial distribution, one or more important effects might not have been accounted
for in the model, or the data might be positively correlated. If important fixed effects have been omitted,
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then you might need to consider adding them to the model. Because this is a designed experiment, it is
reasonable not to expect further effects apart from the block and entry effects that represent the treatment
and error control design structure. The reasons for the overdispersion must lie elsewhere.

If overdispersion stems from correlations among the observations, then the model should be appropriately
adjusted. The correlation can have multiple sources. First, it might not be the case that the plants within an
experimental unit responded independently. If the probability of infestation of a particular plant is altered
by the infestation of a neighboring plant within the same unit, the infestation counts are not binomial and a
different probability model should be used. A second possible source of correlations is the lack of indepen-
dence of experimental units. Even if treatments were assigned to units at random, they might not respond
independently. Shared spatial soil effects, for example, can be the underlying factor. The following analyses
take these spatial effects into account.

First, assume that the environmental effects operate at the scale of the blocks. By making the block effects
random, the marginal responses will be correlated due to the fact that observations within a block share the
same random effects. Observations from different blocks will remain uncorrelated, in the spirit of separate
randomizations among the blocks. The next set of statements fits a generalized linear mixed model (GLMM)
with random block effects:

proc glimmix data=HessianFly;
class block entry;
model y/n = entry / solution;
random block;

run;

Because the conditional distribution—conditional on the block effects—is binomial, the marginal distribu-
tion will be overdispersed relative to the binomial distribution. In contrast to adding a multiplicative scale
parameter to the variance function, treating the block effects as random changes the estimates compared to
a model with fixed block effects.

In the presence of random effects and a conditional binomial distribution, PROC GLIMMIX does not
use maximum likelihood for estimation. Instead, the GLIMMIX procedure applies a restricted (residual)
pseudo-likelihood algorithm (Output 41.1.9). The “restricted” attribute derives from the same rationale by
which restricted (residual) maximum likelihood methods for linear mixed models attain their name; the
likelihood equations are adjusted for the presence of fixed effects in the model to reduce bias in covariance
parameter estimates.

Output 41.1.9 Model Information in GLMM Analysis

The GLIMMIX Procedure

Model Information

Data Set WORK.HESSIANFLY
Response Variable (Events) Y
Response Variable (Trials) n
Response Distribution Binomial
Link Function Logit
Variance Function Default
Variance Matrix Not blocked
Estimation Technique Residual PL
Degrees of Freedom Method Containment
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The “Class Level Information” and “Number of Observations” tables are as before (Output 41.1.10).

Output 41.1.10 Class Level Information and Number of Observations

Class Level Information

Class Levels Values

block 4 1 2 3 4
entry 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Observations Read 64
Number of Observations Used 64
Number of Events 396
Number of Trials 736

The “Dimensions” table indicates that there is a single G-side parameter, the variance of the random block
effect (Output 41.1.11). The “Dimensions” table has changed from the previous model (compare Out-
put 41.1.11 to Output 41.1.3). Note that although the block effect has four levels, only a single variance
component is estimated. The Z matrix has four columns, however, corresponding to the four levels of the
block effect. Because no SUBJECT= option is used in the RANDOM statement, the GLIMMIX procedure
treats these data as having arisen from a single subject with 64 observations.

Output 41.1.11 Model Dimensions Information in GLMM Analysis

Dimensions

G-side Cov. Parameters 1
Columns in X 17
Columns in Z 4
Subjects (Blocks in V) 1
Max Obs per Subject 64

The “Optimization Information” table indicates that a quasi-Newton method is used to solve the optimiza-
tion problem. This is the default optimization method for GLMM models (Output 41.1.12).

Output 41.1.12 Optimization Information in GLMM Analysis

Optimization Information

Optimization Technique Dual Quasi-Newton
Parameters in Optimization 1
Lower Boundaries 1
Upper Boundaries 0
Fixed Effects Profiled
Starting From Data
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In contrast to the Newton-Raphson method, the quasi-Newton method does not require second derivatives.
Because the covariance parameters are not unbounded in this example, the procedure enforces a lower
boundary constraint (zero) for the variance of the block effect, and the optimization method is changed to a
dual quasi-Newton method. The fixed effects are profiled from the likelihood equations in this model. The
resulting optimization problem involves only the covariance parameters.

The “Iteration History” table appears to indicate that the procedure converged after four iterations (Out-
put 41.1.13). Notice, however, that this table has changed slightly from the previous analysis (see Out-
put 41.1.5). The Evaluations column has been replaced by the Subiterations column, because the GLIMMIX
procedure applied a doubly iterative fitting algorithm. The entire process consisted of five optimizations,
each of which was iterative. The initial optimization required four iterations, the next one required three
iterations, and so on.

Output 41.1.13 Iteration History in GLMM Analysis

Iteration History

Objective Max
Iteration Restarts Subiterations Function Change Gradient

0 0 4 173.28473428 0.81019251 0.000197
1 0 3 181.66726674 0.17550228 0.000739
2 0 2 182.20789493 0.00614874 7.018E-6
3 0 1 182.21315596 0.00004386 1.213E-8
4 0 0 182.21317662 0.00000000 3.349E-6

Convergence criterion (PCONV=1.11022E-8) satisfied.

The “Fit Statistics” table shows information about the fit of the GLMM (Output 41.1.14). The log likelihood
reported in the table is not the residual log likelihood of the data. It is the residual log likelihood for an
approximated model. The generalized chi-square statistic measures the residual sum of squares in the final
model, and the ratio with its degrees of freedom is a measure of variability of the observation about the
mean model.

Output 41.1.14 Fit Statistics in GLMM Analysis

Fit Statistics

-2 Res Log Pseudo-Likelihood 182.21
Generalized Chi-Square 107.96
Gener. Chi-Square / DF 2.25
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The variance of the random block effects is rather small (Output 41.1.15).

Output 41.1.15 Estimated Covariance Parameters and Approximate Standard Errors

Covariance Parameter
Estimates

Cov Standard
Parm Estimate Error

block 0.01116 0.03116

If the environmental effects operate on a spatial scale smaller than the block size, the random block model
does not provide a suitable adjustment. From the coarse layout of the experimental area, it is not surprising
that random block effects alone do not account for the overdispersion in the data. Adding a random compo-
nent to a generalized linear model is different from adding a multiplicative overdispersion component, for
example, via the PSCALE option in PROC GENMOD or a

random _residual_;

statement in PROC GLIMMIX. Such overdispersion components do not affect the parameter estimates, only
their standard errors. A genuine random effect, on the other hand, affects both the parameter estimates and
their standard errors (compare Output 41.1.16 to Output 41.1.7).

Output 41.1.16 Parameter Estimates for Fixed Effects in GLMM Analysis

Solutions for Fixed Effects

Standard
Effect entry Estimate Error DF t Value Pr > |t|

Intercept -1.4637 0.3738 3 -3.92 0.0296
entry 1 2.9609 0.5384 45 5.50 <.0001
entry 2 2.7807 0.5138 45 5.41 <.0001
entry 3 2.4339 0.4934 45 4.93 <.0001
entry 4 1.5347 0.4542 45 3.38 0.0015
entry 5 2.7653 0.5276 45 5.24 <.0001
entry 6 2.0014 0.4865 45 4.11 0.0002
entry 7 2.3518 0.4952 45 4.75 <.0001
entry 8 1.2927 0.4739 45 2.73 0.0091
entry 9 1.5663 0.4554 45 3.44 0.0013
entry 10 2.2896 0.5179 45 4.42 <.0001
entry 11 1.5018 0.4682 45 3.21 0.0025
entry 12 1.5075 0.4752 45 3.17 0.0027
entry 13 -0.5955 0.6475 45 -0.92 0.3626
entry 14 0.4573 0.5111 45 0.89 0.3758
entry 15 0.8683 0.4682 45 1.85 0.0702
entry 16 0 . . . .
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Output 41.1.17 Type III Test of Entry in GLMM Analysis

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

entry 15 45 6.90 <.0001

Because the block variance component is small, the Type III test for the variety effect in Output 41.1.17 is
affected only very little compared to the GLM (Output 41.1.8).

Analysis with Smooth Spatial Trends

You can also consider these data in an observational sense, where the covariation of the observations is
subject to modeling. Rather than deriving model components from the experimental design alone, envi-
ronmental effects can be modeled by adjusting the mean and/or correlation structure. Gotway and Stroup
(1997) and Schabenberger and Pierce (2002) supplant the coarse block effects with smooth-scale spatial
components.

The model considered by Gotway and Stroup (1997) is a marginal model in that the correlation structure is
modeled through residual-side (R-side) random components. This exponential covariance model is fit with
the following statements:

proc glimmix data=HessianFly;
class entry;
model y/n = entry / solution ddfm=contain;
random _residual_ / subject=intercept type=sp(exp)(lng lat);

run;

Note that the block effects have been removed from the statements. The keyword _RESIDUAL_ in the
RANDOM statement instructs the GLIMMIX procedure to model the R matrix. Here, R is to be modeled
as an exponential covariance structure matrix. The SUBJECT=INTERCEPT option means that all observa-
tions are considered correlated. Because the random effects are residual-type (R-side) effects, there are no
columns in the Z matrix for this model (Output 41.1.18).

Output 41.1.18 Model Dimension Information in Marginal Spatial Analysis

The GLIMMIX Procedure

Dimensions

R-side Cov. Parameters 2
Columns in X 17
Columns in Z per Subject 0
Subjects (Blocks in V) 1
Max Obs per Subject 64
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In addition to the fixed effects, the GLIMMIX procedure now profiles one of the covariance parameters, the
variance of the exponential covariance model (Output 41.1.19). This reduces the size of the optimization
problem. Only a single parameter is part of the optimization, the “range” (SP(EXP)) of the spatial process.

Output 41.1.19 Optimization Information in Spatial Analysis

Optimization Information

Optimization Technique Dual Quasi-Newton
Parameters in Optimization 1
Lower Boundaries 1
Upper Boundaries 0
Fixed Effects Profiled
Residual Variance Profiled
Starting From Data

The practical range of a spatial process is that distance at which the correlation between data points has de-
creased to at most 0.05. The parameter reported by the GLIMMIX procedure as SP(EXP) in Output 41.1.20
corresponds to one-third of the practical range. The practical range in this process is 3 � 0:9052 D 2:7156.
Correlations extend beyond a single experimental unit, but they do not appear to exist on the scale of the
block size.

Output 41.1.20 Estimates of Covariance Parameters

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

SP(EXP) Intercept 0.9052 0.4404
Residual 2.5315 0.6974

The sill of the spatial process, the variance of the underlying residual effect, is estimated as 2.5315.

Output 41.1.21 Type III Test of Entry Effect in Spatial Analysis

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

entry 15 48 3.60 0.0004

The F value for the entry effect has been sharply reduced compared to the previous analyses. The smooth
spatial variation accounts for some of the variation among the varieties (Output 41.1.21).

In this example three models were considered for the analysis of a randomized block design with binomial
outcomes. If data are correlated, a standard generalized linear model often will indicate overdispersion
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relative to the binomial distribution. Two courses of action are considered in this example to address this
overdispersion. First, the inclusion of G-side random effects models the correlation indirectly; it is induced
through the sharing of random effects among responses from the same block. Second, the R-side spatial
covariance structure models covariation directly. In generalized linear (mixed) models these two modeling
approaches can lead to different inferences, because the models have different interpretation. The random
block effects are modeled on the linked (logit) scale, and the spatial effects were modeled on the mean scale.
Only in a linear mixed model are the two scales identical.

Example 41.2: Mating Experiment with Crossed Random Effects
McCullagh and Nelder (1989, Ch. 14.5) describe a mating experiment—conducted by S. Arnold and P.
Verell at the University of Chicago, Department of Ecology and Evolution—involving two geographically
isolated populations of mountain dusky salamanders. One goal of the experiment was to determine whether
barriers to interbreeding have evolved in light of the geographical isolation of the populations. In this
case, matings within a population should be more successful than matings between the populations. The
experiment conducted in the summer of 1986 involved 40 animals, 20 rough butt (R) and 20 whiteside
(W) salamanders, with equal numbers of males and females. The animals were grouped into two sets of R
males, two sets of R females, two sets of W males, and two sets of W females, so that each set comprised
five salamanders. Each set was mated against one rough butt and one whiteside set, creating eight crossings.
Within the pairings of sets, each female was paired to three male animals. The salamander mating data have
been used by a number of authors; see, for example, McCullagh and Nelder (1989); Schall (1991); Karim
and Zeger (1992); Breslow and Clayton (1993); Wolfinger and O’Connell (1993); Shun (1997).

The following DATA step creates the data set for the analysis.

data salamander;
input day fpop$ fnum mpop$ mnum mating @@;
datalines;

4 rb 1 rb 1 1 4 rb 2 rb 5 1
4 rb 3 rb 2 1 4 rb 4 rb 4 1
4 rb 5 rb 3 1 4 rb 6 ws 9 1
4 rb 7 ws 8 0 4 rb 8 ws 6 0
4 rb 9 ws 10 0 4 rb 10 ws 7 0
4 ws 1 rb 9 0 4 ws 2 rb 7 0
4 ws 3 rb 8 0 4 ws 4 rb 10 0
4 ws 5 rb 6 0 4 ws 6 ws 5 0
4 ws 7 ws 4 1 4 ws 8 ws 1 1
4 ws 9 ws 3 1 4 ws 10 ws 2 1
8 rb 1 ws 4 1 8 rb 2 ws 5 1
8 rb 3 ws 1 0 8 rb 4 ws 2 1
8 rb 5 ws 3 1 8 rb 6 rb 9 1
8 rb 7 rb 8 0 8 rb 8 rb 6 1
8 rb 9 rb 7 0 8 rb 10 rb 10 0
8 ws 1 ws 9 1 8 ws 2 ws 6 0
8 ws 3 ws 7 0 8 ws 4 ws 10 1
8 ws 5 ws 8 1 8 ws 6 rb 2 0
8 ws 7 rb 1 1 8 ws 8 rb 4 0
8 ws 9 rb 3 1 8 ws 10 rb 5 0
12 rb 1 rb 5 1 12 rb 2 rb 3 1
12 rb 3 rb 1 1 12 rb 4 rb 2 1
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12 rb 5 rb 4 1 12 rb 6 ws 10 1
12 rb 7 ws 9 0 12 rb 8 ws 7 0
12 rb 9 ws 8 1 12 rb 10 ws 6 1
12 ws 1 rb 7 1 12 ws 2 rb 9 0
12 ws 3 rb 6 0 12 ws 4 rb 8 1
12 ws 5 rb 10 0 12 ws 6 ws 3 1
12 ws 7 ws 5 1 12 ws 8 ws 2 1
12 ws 9 ws 1 1 12 ws 10 ws 4 0
16 rb 1 ws 1 0 16 rb 2 ws 3 1
16 rb 3 ws 4 1 16 rb 4 ws 5 0
16 rb 5 ws 2 1 16 rb 6 rb 7 0
16 rb 7 rb 9 1 16 rb 8 rb 10 0
16 rb 9 rb 6 1 16 rb 10 rb 8 0
16 ws 1 ws 10 1 16 ws 2 ws 7 1
16 ws 3 ws 9 0 16 ws 4 ws 8 1
16 ws 5 ws 6 0 16 ws 6 rb 4 0
16 ws 7 rb 2 0 16 ws 8 rb 5 0
16 ws 9 rb 1 1 16 ws 10 rb 3 1
20 rb 1 rb 4 1 20 rb 2 rb 1 1
20 rb 3 rb 3 1 20 rb 4 rb 5 1
20 rb 5 rb 2 1 20 rb 6 ws 6 1
20 rb 7 ws 7 0 20 rb 8 ws 10 1
20 rb 9 ws 9 1 20 rb 10 ws 8 1
20 ws 1 rb 10 0 20 ws 2 rb 6 0
20 ws 3 rb 7 0 20 ws 4 rb 9 0
20 ws 5 rb 8 0 20 ws 6 ws 2 0
20 ws 7 ws 1 1 20 ws 8 ws 5 1
20 ws 9 ws 4 1 20 ws 10 ws 3 1
24 rb 1 ws 5 1 24 rb 2 ws 2 1
24 rb 3 ws 3 1 24 rb 4 ws 4 1
24 rb 5 ws 1 1 24 rb 6 rb 8 1
24 rb 7 rb 6 0 24 rb 8 rb 9 1
24 rb 9 rb 10 1 24 rb 10 rb 7 0
24 ws 1 ws 8 1 24 ws 2 ws 10 0
24 ws 3 ws 6 1 24 ws 4 ws 9 1
24 ws 5 ws 7 0 24 ws 6 rb 1 0
24 ws 7 rb 5 1 24 ws 8 rb 3 0
24 ws 9 rb 4 0 24 ws 10 rb 2 0
;

The first observation, for example, indicates that rough butt female 1 was paired in the laboratory on day
4 of the experiment with rough butt male 1, and the pair mated. On the same day rough butt female 7 was
paired with whiteside male 8, but the pairing did not result in mating of the animals.

The model adopted by many authors for these data comprises fixed effects for gender and population, their
interaction, and male and female random effects. Specifically, let �RR, �RW , �WR, and �WW denote the
mating probabilities between the populations, where the first subscript identifies the female partner of the
pair. Then, you model

log
�

�kl

1 � �kl

�
D �kl C 
f C 
m k; l 2 fR;W g

where 
f and 
m are independent random variables representing female and male random effects (20 each),
and �kl denotes the average logit of mating between females of population k and males of population l.
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The following statements fit this model by pseudo-likelihood:

proc glimmix data=salamander;
class fpop fnum mpop mnum;
model mating(event='1') = fpop|mpop / dist=binary;
random fpop*fnum mpop*mnum;
lsmeans fpop*mpop / ilink;

run;

The response variable is the two-level variable mating. Because it is coded as zeros and ones, and because
PROC GLIMMIX models by default the probability of the first level according to the response-level order-
ing, the EVENT=’1’ option instructs PROC GLIMMIX to model the probability of a successful mating.
The distribution of the mating variable, conditional on the random effects, is binary.

The fpop*fnum effect in the RANDOM statement creates a random intercept for each female animal. Be-
cause fpop and fnum are CLASS variables, the effect has 20 levels (10 rb and 10 ws females). Similarly, the
mpop*mnum effect creates the random intercepts for the male animals. Because no TYPE= is specified in
the RANDOM statement, the covariance structure defaults to TYPE=VC. The random effects and their lev-
els are independent, and each effect has its own variance component. Because the conditional distribution
of the data, conditioned on the random effects, is binary, no extra scale parameter (�) is added.

The LSMEANS statement requests least squares means for the four levels of the fpop*mpop effect, which
are estimates of the cell means in the 2�2 classification of female and male populations. The ILINK option
in the LSMEANS statement requests that the estimated means and standard errors are also reported on the
scale of the data. This yields estimates of the four mating probabilities, �RR, �RW , �WR, and �WW .

The “Model Information” table displays general information about the model being fit (Output 41.2.1).

Output 41.2.1 Analysis of Mating Experiment with Crossed Random Effects

The GLIMMIX Procedure

Model Information

Data Set WORK.SALAMANDER
Response Variable mating
Response Distribution Binary
Link Function Logit
Variance Function Default
Variance Matrix Not blocked
Estimation Technique Residual PL
Degrees of Freedom Method Containment

The response variable mating follows a binary distribution (conditional on the random effects). Hence, the
mean of the data is an event probability, � , and the logit of this probability is linearly related to the linear
predictor of the model. The variance function is the default function that is implied by the distribution,
a.�/ D �.1 � �/. The variance matrix is not blocked, because the GLIMMIX procedure does not process
the data by subjects (see the section “Processing by Subjects” on page 3082 for details). The estimation
technique is the default method for GLMMs, residual pseudo-likelihood (METHOD=RSPL), and degrees
of freedom for tests and confidence intervals are determined by the containment method.

The “Class Level Information” table in Output 41.2.2 lists the levels of the variables listed in the CLASS
statement, as well as the order of the levels.
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Output 41.2.2 Class Level Information and Number of Observations

Class Level Information

Class Levels Values

fpop 2 rb ws
fnum 10 1 2 3 4 5 6 7 8 9 10
mpop 2 rb ws
mnum 10 1 2 3 4 5 6 7 8 9 10

Number of Observations Read 120
Number of Observations Used 120

Note that there are two female populations and two male populations; also, the variables fnum and mnum
have 10 levels each. As a consequence, the effects fpop*fnum and mpop*mnum identify the 20 females and
males, respectively. The effect fpop*mpop identifies the four mating types.

The “Response Profile Table,” which is displayed for binary or multinomial data, lists the levels of the
response variable and their order (Output 41.2.3). With binary data, the table also provides information
about which level of the response variable defines the event. Because of the EVENT=’1’ response variable
option in the MODEL statement, the probability being modeled is that of the higher-ordered value.

Output 41.2.3 Response Profiles

Response Profile

Ordered Total
Value mating Frequency

1 0 50
2 1 70

The GLIMMIX procedure is modeling the probability that mating='1'.

There are two covariance parameters in this model, the variance of the fpop*fnum effect and the variance
of the mpop*mnum effect (Output 41.2.4). Both parameters are modeled as G-side parameters. The nine
columns in the X matrix comprise the intercept, two columns each for the levels of the fpop and mpop
effects, and four columns for their interaction. The Z matrix has 40 columns, one for each animal. Because
the data are not processed by subjects, PROC GLIMMIX assumes the data consist of a single subject (a
single block in V).

Output 41.2.4 Model Dimensions Information

Dimensions

G-side Cov. Parameters 2
Columns in X 9
Columns in Z 40
Subjects (Blocks in V) 1
Max Obs per Subject 120
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The “Optimization Information” table displays basic information about the optimization (Output 41.2.5).
The default technique for GLMMs is the quasi-Newton method. There are two parameters in the optimiza-
tion, which correspond to the two variance components. The 17 fixed effects parameters are not part of the
optimization. The initial optimization computes pseudo-data based on the response values in the data set
rather than from estimates of a generalized linear model fit.

Output 41.2.5 Optimization Information

Optimization Information

Optimization Technique Newton-Raphson with Ridging
Parameters in Optimization 2
Lower Boundaries 2
Upper Boundaries 0
Fixed Effects Profiled
Starting From Data

The GLIMMIX procedure performs eight optimizations after the initial optimization (Output 41.2.6). That
is, following the initial pseudo-data creation, the pseudo-data were updated eight more times and a total of
nine linear mixed models were estimated.

Output 41.2.6 Iteration History and Convergence Status

Iteration History

Objective Max
Iteration Restarts Subiterations Function Change Gradient

0 0 4 537.09173501 2.00000000 1.719E-8
1 0 3 544.12516903 0.66319780 1.14E-8
2 0 2 545.89139118 0.13539318 1.609E-6
3 0 2 546.10489538 0.01742065 5.89E-10
4 0 1 546.13075146 0.00212475 9.654E-7
5 0 1 546.13374731 0.00025072 1.346E-8
6 0 1 546.13409761 0.00002931 1.84E-10
7 0 0 546.13413861 0.00000000 4.285E-6

Convergence criterion (PCONV=1.11022E-8) satisfied.

The “Covariance Parameter Estimates” table lists the estimates for the two variance components and their
estimated standard errors (Output 41.2.7). The heterogeneity (in the logit of the mating probabilities) among
the females is considerably larger than the heterogeneity among the males.
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Output 41.2.7 Estimated Covariance Parameters and Approximate Standard Errors

Covariance Parameter Estimates

Standard
Cov Parm Estimate Error

fpop*fnum 1.4099 0.8871
mpop*mnum 0.08963 0.4102

The “Type III Tests of Fixed Effects” table indicates a significant interaction between the male and female
populations (Output 41.2.8). A comparison in the logits of mating success in pairs with R females and W
females depends on whether the male partner in the pair is the same species. The “fpop*mpop Least Squares
Means” table shows this effect more clearly (Output 41.2.9).

Output 41.2.8 Tests of Main Effects and Interaction

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

fpop 1 18 2.86 0.1081
mpop 1 17 4.71 0.0444
fpop*mpop 1 81 9.61 0.0027

Output 41.2.9 Interaction Least Squares Means

fpop*mpop Least Squares Means

Standard
Standard Error

fpop mpop Estimate Error DF t Value Pr > |t| Mean Mean

rb rb 1.1629 0.5961 81 1.95 0.0545 0.7619 0.1081
rb ws 0.7839 0.5729 81 1.37 0.1750 0.6865 0.1233
ws rb -1.4119 0.6143 81 -2.30 0.0241 0.1959 0.09678
ws ws 1.0151 0.5871 81 1.73 0.0876 0.7340 0.1146
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In a pairing with a male rough butt salamander, the logit drops sharply from 1.1629 to –1.4119 when the
male is paired with a whiteside female instead of a female from its own population. The corresponding
estimated probabilities of mating success are b�RR D 0:7619 and b�WR D 0:1959. If the same comparisons
are made in pairs with whiteside males, then you also notice a drop in the logit if the female comes from
a different population, 1.0151 versus 0.7839. The change is considerably less, though, corresponding to
mating probabilities of b�WW D 0:7340 and b�RW D 0:6865. Whiteside females appear to be successful
with their own population. Whiteside males appear to succeed equally well with female partners of the two
populations.

This insight into the factor-level comparisons can be amplified by graphing the least squares mean com-
parisons and by subsetting the differences of least squares means. This is accomplished with the following
statements:

ods graphics on;
ods select DiffPlot SliceDiffs;
proc glimmix data=salamander;

class fpop fnum mpop mnum;
model mating(event='1') = fpop|mpop / dist=binary;
random fpop*fnum mpop*mnum;
lsmeans fpop*mpop / plots=diffplot;
lsmeans fpop*mpop / slicediff=(mpop fpop);

run;
ods graphics off;

The PLOTS=DIFFPLOT option in the first LSMEANS statement requests a comparison plot that displays
the result of all pairwise comparisons (Output 41.2.10). The SLICEDIFF=(mpop fpop) option requests
differences of simple effects.

The comparison plot in Output 41.2.10 is also known as a mean-mean scatter plot (Hsu 1996). Each solid
line in the plot corresponds to one of the possible 4 � 3=2 D 6 unique pairwise comparisons. The line is
centered at the intersection of two least squares means, and the length of the line segments corresponds to
the width of a 95% confidence interval for the difference between the two least squares means. The length of
the segment is adjusted for the rotation. If a line segment crosses the dashed 45-degree line, the comparison
between the two factor levels is not significant; otherwise, it is significant. The horizontal and vertical axes
of the plot are drawn in least squares means units, and the grid lines are placed at the values of the least
squares means.

The six pairs of least squares means comparisons separate into two sets of three pairs. Comparisons in the
first set are significant; comparisons in the second set are not significant. For the significant set, the female
partner in one of the pairs is a whiteside salamander. For the nonsignificant comparisons, the male partner
in one of the pairs is a whiteside salamander.
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Output 41.2.10 LS-Means Diffogram

The “Simple Effect Comparisons” tables show the results of the SLICEDIFF= option in the second
LSMEANS statement (Output 41.2.11).

Output 41.2.11 Simple Effect Comparisons

Simple Effect Comparisons of fpop*mpop Least Squares Means By mpop

Simple
Effect Standard
Level fpop _fpop Estimate Error DF t Value Pr > |t|

mpop rb rb ws 2.5748 0.8458 81 3.04 0.0031
mpop ws rb ws -0.2312 0.8092 81 -0.29 0.7758
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Output 41.2.11 continued

Simple Effect Comparisons of fpop*mpop Least Squares Means By fpop

Simple
Effect Standard
Level mpop _mpop Estimate Error DF t Value Pr > |t|

fpop rb rb ws 0.3790 0.6268 81 0.60 0.5471
fpop ws rb ws -2.4270 0.6793 81 -3.57 0.0006

The first table of simple effect comparisons holds fixed the level of the mpop factor and compares the levels
of the fpop factor. Because there is only one possible comparison for each male population, there are two
entries in the table. The first entry compares the logits of mating probabilities when the male partner is
a rough butt, and the second entry applies when the male partner is from the whiteside population. The
second table of simple effects comparisons applies the same logic, but holds fixed the level of the female
partner in the pair. Note that these four comparisons are a subset of all six possible comparisons, eliminating
those where both factors are varied at the same time. The simple effect comparisons show that there is no
difference in mating probabilities if the male partner is a whiteside salamander, or if the female partner is a
rough butt. Rough butt females also appear to mate indiscriminately.

Example 41.3: Smoothing Disease Rates; Standardized Mortality Ratios
Clayton and Kaldor (1987, Table 1) present data on observed and expected cases of lip cancer in the 56
counties of Scotland between 1975 and 1980. The expected number of cases was determined by a separate
multiplicative model that accounted for the age distribution in the counties. The goal of the analysis is to
estimate the county-specific log-relative risks, also known as standardized mortality ratios (SMR).

If Yi is the number of incident cases in county i and Ei is the expected number of incident cases, then the
ratio of observed to expected counts, Yi=Ei , is the standardized mortality ratio. Clayton and Kaldor (1987)
assume there exists a relative risk �i that is specific to each county and is a random variable. Conditional
on �i , the observed counts are independent Poisson variables with mean Ei�i .

An elementary mixed model for �i specifies only a random intercept for each county, in addition to a fixed
intercept. Breslow and Clayton (1993), in their analysis of these data, also provide a covariate that measures
the percentage of employees in agriculture, fishing, and forestry. The expanded model for the region-specific
relative risk in Breslow and Clayton (1993) is

�i D exp fˇ0 C ˇ1xi=10C 
ig ; i D 1; � � � ; 56

where ˇ0 and ˇ1 are fixed effects, and the 
i are county random effects.

The following DATA step creates the data set lipcancer. The expected number of cases is based on the
observed standardized mortality ratio for counties with lip cancer cases, and based on the expected counts
reported by Clayton and Kaldor (1987, Table 1) for the counties without cases. The sum of the expected
counts then equals the sum of the observed counts.
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data lipcancer;
input county observed expected employment SMR;
if (observed > 0) then expCount = 100*observed/SMR;
else expCount = expected;
datalines;

1 9 1.4 16 652.2
2 39 8.7 16 450.3
3 11 3.0 10 361.8
4 9 2.5 24 355.7
5 15 4.3 10 352.1
6 8 2.4 24 333.3
7 26 8.1 10 320.6
8 7 2.3 7 304.3
9 6 2.0 7 303.0

10 20 6.6 16 301.7
11 13 4.4 7 295.5
12 5 1.8 16 279.3
13 3 1.1 10 277.8
14 8 3.3 24 241.7
15 17 7.8 7 216.8
16 9 4.6 16 197.8
17 2 1.1 10 186.9
18 7 4.2 7 167.5
19 9 5.5 7 162.7
20 7 4.4 10 157.7
21 16 10.5 7 153.0
22 31 22.7 16 136.7
23 11 8.8 10 125.4
24 7 5.6 7 124.6
25 19 15.5 1 122.8
26 15 12.5 1 120.1
27 7 6.0 7 115.9
28 10 9.0 7 111.6
29 16 14.4 10 111.3
30 11 10.2 10 107.8
31 5 4.8 7 105.3
32 3 2.9 24 104.2
33 7 7.0 10 99.6
34 8 8.5 7 93.8
35 11 12.3 7 89.3
36 9 10.1 0 89.1
37 11 12.7 10 86.8
38 8 9.4 1 85.6
39 6 7.2 16 83.3
40 4 5.3 0 75.9
41 10 18.8 1 53.3
42 8 15.8 16 50.7
43 2 4.3 16 46.3
44 6 14.6 0 41.0
45 19 50.7 1 37.5
46 3 8.2 7 36.6
47 2 5.6 1 35.8
48 3 9.3 1 32.1
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49 28 88.7 0 31.6
50 6 19.6 1 30.6
51 1 3.4 1 29.1
52 1 3.6 0 27.6
53 1 5.7 1 17.4
54 1 7.0 1 14.2
55 0 4.2 16 0.0
56 0 1.8 10 0.0
;

Because the mean of the Poisson variates, conditional on the random effects, is �i D Ei�i , applying a log
link yields

logf�ig D logfEig C ˇ0 C ˇ1xi=10C 
i

The term logfEig is an offset, a regressor variable whose coefficient is known to be one. Note that it is
assumed that the Ei are known; they are not treated as random variables.

The following statements fit this model by residual pseudo-likelihood:

proc glimmix data=lipcancer;
class county;
x = employment / 10;
logn = log(expCount);
model observed = x / dist=poisson offset=logn

solution ddfm=none;
random county;
SMR_pred = 100*exp(_zgamma_ + _xbeta_);
id employment SMR SMR_pred;
output out=glimmixout;

run;

The offset is created with the assignment statement

logn = log(expCount);

and is associated with the linear predictor through the OFFSET= option in the MODEL statement. The
statement

x = employment / 10;

transforms the covariate measuring percentage of employment in agriculture, fisheries, and forestry to agree
with the analysis of Breslow and Clayton (1993). The DDFM=NONE option in the MODEL statement
requests chi-square tests and z tests instead of the default F tests and t tests by setting the denominator
degrees of freedom in tests of fixed effects to1.

The statement

SMR_pred = 100*exp(_zgamma_ + _xbeta_);

calculates the fitted standardized mortality rate. Note that the offset variable does not contribute to the
exponentiated term.

The OUTPUT statement saves results of the calculations to the output data set glimmixout. The ID statement
specifies that only the listed variables are written to the output data set.
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Output 41.3.1 Model Information in Poisson GLMM

The GLIMMIX Procedure

Model Information

Data Set WORK.LIPCANCER
Response Variable observed
Response Distribution Poisson
Link Function Log
Variance Function Default
Offset Variable logn = log(expCount);
Variance Matrix Not blocked
Estimation Technique Residual PL
Degrees of Freedom Method None

Class Level Information

Class Levels Values

county 56 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
49 50 51 52 53 54 55 56

Number of Observations Read 56
Number of Observations Used 56

Dimensions

G-side Cov. Parameters 1
Columns in X 2
Columns in Z 56
Subjects (Blocks in V) 1
Max Obs per Subject 56

The GLIMMIX procedure displays in the “Model Information” table that the offset variable was computed
with programming statements and the final assignment statement from your GLIMMIX statements (Out-
put 41.3.1). There are two columns in the X matrix, corresponding to the intercept and the regressor x=10.
There are 56 columns in the Z matrix, however, one for each observation in the data set (Output 41.3.1).
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The optimization involves only a single covariance parameter, the variance of the county effect (Out-
put 41.3.2). Because this parameter is a variance, the GLIMMIX procedure imposes a lower boundary
constraint; the solution for the variance is bounded by zero from below.

Output 41.3.2 Optimization Information in Poisson GLMM

Optimization Information

Optimization Technique Dual Quasi-Newton
Parameters in Optimization 1
Lower Boundaries 1
Upper Boundaries 0
Fixed Effects Profiled
Starting From Data

Following the initial creation of pseudo-data and the fit of a linear mixed model, the procedure goes through
five more updates of the pseudo-data, each associated with a separate optimization (Output 41.3.3). Al-
though the objective function in each optimization is the negative of twice the restricted maximum likelihood
for that pseudo-data, there is no guarantee that across the outer iterations the objective function decreases
in subsequent optimizations. In this example, minus twice the residual maximum likelihood at convergence
takes on its smallest value at the initial optimization and increases in subsequent optimizations.

Output 41.3.3 Iteration History in Poisson GLMM

Iteration History

Objective Max
Iteration Restarts Subiterations Function Change Gradient

0 0 4 123.64113992 0.20997891 3.848E-8
1 0 3 127.05866018 0.03393332 0.000048
2 0 2 127.48839749 0.00223427 5.753E-6
3 0 1 127.50502469 0.00006946 1.938E-7
4 0 1 127.50528068 0.00000118 1.09E-7
5 0 0 127.50528481 0.00000000 1.299E-6

Convergence criterion (PCONV=1.11022E-8) satisfied.

The “Covariance Parameter Estimates” table in Output 41.3.4 shows the estimate of the variance of the
region-specific log-relative risks. There is significant county-to-county heterogeneity in risks. If the covari-
ate were removed from the analysis, as in Clayton and Kaldor (1987), the heterogeneity in county-specific
risks would increase. (The fitted SMRs in Table 6 of Breslow and Clayton (1993) were obtained without the
covariate x in the model.)
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Output 41.3.4 Estimated Covariance Parameters in Poisson GLMM

Covariance Parameter Estimates

Cov Standard
Parm Estimate Error

county 0.3567 0.09869

The “Solutions for Fixed Effects” table displays the estimates of ˇ0 and ˇ1 along with their standard errors
and test statistics (Output 41.3.5). Because of the DDFM=NONE option in the MODEL statement, PROC
GLIMMIX assumes that the degrees of freedom for the t tests of H0Wˇj D 0 are infinite. The p-values
correspond to probabilities under a standard normal distribution. The covariate measuring employment
percentages in agriculture, fisheries, and forestry is significant. This covariate might be a surrogate for the
exposure to sunlight, an important risk factor for lip cancer.

Output 41.3.5 Fixed-Effects Parameter Estimates in Poisson GLMM

Solutions for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept -0.4406 0.1572 Infty -2.80 0.0051
x 0.6799 0.1409 Infty 4.82 <.0001

You can examine the quality of the fit of this model with various residual plots. A panel of studentized
residuals is requested with the following statements:

ods graphics on;
ods select StudentPanel;

proc glimmix data=lipcancer plots=studentpanel;
class county;
x = employment / 10;
logn = log(expCount);
model observed = x / dist=poisson offset=logn s ddfm=none;
random county;

run;

ods graphics off;

The graph in the upper-left corner of the panel displays studentized residuals plotted against the linear
predictor (Output 41.3.6). The default of the GLIMMIX procedure is to use the estimated BLUPs in the
construction of the residuals and to present them on the linear scale, which in this case is the logarithmic
scale. You can change the type of the computed residual with the TYPE= suboptions of each paneled
display. For example, the option PLOTS=STUDENTPANEL(TYPE=NOBLUP) would request a paneled
display of the marginal residuals on the linear scale.
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Output 41.3.6 Panel of Studentized Residuals

The graph in the upper-right corner of the panel shows a histogram with overlaid normal density. A Q-Q
plot and a box plot are shown in the lower cells of the panel.

The following statements produce a graph of the observed and predicted standardized mortality ratios (Out-
put 41.3.7):

proc template;
define statgraph scatter;

BeginGraph;
layout overlayequated / yaxisopts=(label='Predicted SMR')

xaxisopts=(label='Observed SMR')
equatetype=square;

lineparm y=0 slope=1 x=0 /
lineattrs = GraphFit(pattern=dash)
extend = true;

scatterplot y=SMR_pred x=SMR /
markercharacter = employment;

endlayout;
EndGraph;

end;
run;
proc sgrender data=glimmixout template=scatter;
run;
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In Output 41.3.7, fitted SMRs tend to be larger than the observed SMRs for counties with small observed
SMR and smaller than the observed SMRs for counties with high observed SMR.

Output 41.3.7 Observed and Predicted SMRs; Data Labels Indicate Covariate Values

To demonstrate the impact of the random effects adjustment to the log-relative risks, the following state-
ments fit a Poisson regression model (a GLM) by maximum likelihood:

proc glimmix data=lipcancer;
x = employment / 10;
logn = log(expCount);
model observed = x / dist=poisson offset=logn

solution ddfm=none;
SMR_pred = 100*exp(_zgamma_ + _xbeta_);
id employment SMR SMR_pred;
output out=glimmixout;

run;

The GLIMMIX procedure defaults to maximum likelihood estimation because these statements fit a gen-
eralized linear model with nonnormal distribution. As a consequence, the SMRs are county specific only
to the extent that the risks vary with the value of the covariate. But risks are no longer adjusted based on
county-to-county heterogeneity in the observed incidence count.
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Because of the absence of random effects, the GLIMMIX procedure recognizes the model as a generalized
linear model and fits it by maximum likelihood (Output 41.3.8). The variance matrix is diagonal because
the observations are uncorrelated.

Output 41.3.8 Model Information in Poisson GLM

The GLIMMIX Procedure

Model Information

Data Set WORK.LIPCANCER
Response Variable observed
Response Distribution Poisson
Link Function Log
Variance Function Default
Offset Variable logn = log(expCount);
Variance Matrix Diagonal
Estimation Technique Maximum Likelihood
Degrees of Freedom Method None

The “Dimensions” table shows that there are no G-side random effects in this model and no R-side scale
parameter either (Output 41.3.9).

Output 41.3.9 Model Dimensions Information in Poisson GLM

Dimensions

Columns in X 2
Columns in Z 0
Subjects (Blocks in V) 1
Max Obs per Subject 56

Because this is a GLM, the GLIMMIX procedure defaults to the Newton-Raphson algorithm, and the fixed
effects (intercept and slope) comprise the parameters in the optimization (Output 41.3.10). (The default
optimization technique for a GLM is the Newton-Raphson method.)

Output 41.3.10 Optimization Information in Poisson GLM

Optimization Information

Optimization Technique Newton-Raphson
Parameters in Optimization 2
Lower Boundaries 0
Upper Boundaries 0
Fixed Effects Not Profiled

The estimates of ˇ0 and ˇ1 have changed from the previous analysis. In the GLMM, the estimates wereb̌
0 D �0:4406 and b̌1 D 0:6799 (Output 41.3.11).
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Output 41.3.11 Parameter Estimates in Poisson GLM

Parameter Estimates

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept -0.5419 0.06951 Infty -7.80 <.0001
x 0.7374 0.05954 Infty 12.38 <.0001

More importantly, without the county-specific adjustments through the best linear unbiased predictors of the
random effects, the predicted SMRs are the same for all counties with the same percentage of employees in
agriculture, fisheries, and forestry (Output 41.3.12).

Output 41.3.12 Observed and Predicted SMRs in Poisson GLM
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Example 41.4: Quasi-likelihood Estimation for Proportions with Unknown
Distribution

Wedderburn (1974) analyzes data on the incidence of leaf blotch (Rhynchosporium secalis) on barley.

The data represent the percentage of leaf area affected in a two-way layout with 10 barley varieties at nine
sites. The following DATA step converts these data to proportions, as analyzed in McCullagh and Nelder
(1989, Ch. 9.2.4). The purpose of the analysis is to make comparisons among the varieties, adjusted for site
effects.

data blotch;
array p{9} pct1-pct9;
input variety pct1-pct9;
do site = 1 to 9;

prop = p{site}/100;
output;

end;
drop pct1-pct9;
datalines;

1 0.05 0.00 1.25 2.50 5.50 1.00 5.00 5.00 17.50
2 0.00 0.05 1.25 0.50 1.00 5.00 0.10 10.00 25.00
3 0.00 0.05 2.50 0.01 6.00 5.00 5.00 5.00 42.50
4 0.10 0.30 16.60 3.00 1.10 5.00 5.00 5.00 50.00
5 0.25 0.75 2.50 2.50 2.50 5.00 50.00 25.00 37.50
6 0.05 0.30 2.50 0.01 8.00 5.00 10.00 75.00 95.00
7 0.50 3.00 0.00 25.00 16.50 10.00 50.00 50.00 62.50
8 1.30 7.50 20.00 55.00 29.50 5.00 25.00 75.00 95.00
9 1.50 1.00 37.50 5.00 20.00 50.00 50.00 75.00 95.00
10 1.50 12.70 26.25 40.00 43.50 75.00 75.00 75.00 95.00
;

Little is known about the distribution of the leaf area proportions. The outcomes are not binomial propor-
tions, because they do not represent the ratio of a count over a total number of Bernoulli trials. However,
because the mean proportion �ij for variety j on site i must lie in the interval Œ0; 1�, you can commence the
analysis with a model that treats Prop as a “pseudo-binomial” variable:

EŒPropij � D �ij
�ij D 1=.1C expf��ij g/
�ij D ˇ0 C ˛i C �j

VarŒPropij � D ��ij .1 � �ij /

Here, �ij is the linear predictor for variety j on site i, ˛i denotes the ith site effect, and �j denotes the jth
barley variety effect. The logit of the expected leaf area proportions is linearly related to these effects. The
variance function of the model is that of a binomial(n,�ij ) variable, and � is an overdispersion parameter.
The moniker “pseudo-binomial” derives not from the pseudo-likelihood methods used to estimate the pa-
rameters in the model, but from treating the response variable as if it had first and second moment properties
akin to a binomial random variable.



Example 41.4: Quasi-likelihood Estimation for Proportions with Unknown Distribution F 3165

The model is fit in the GLIMMIX procedure with the following statements:

proc glimmix data=blotch;
class site variety;
model prop = site variety / link=logit dist=binomial;
random _residual_;
lsmeans variety / diff=control('1');

run;

The MODEL statement specifies the distribution as binomial and the logit link. Because the variance func-
tion of the binomial distribution is a.�/ D �.1 � �/, you use the statement

random _residual_;

to specify the scale parameter �. The LSMEANS statement requests estimates of the least squares means
for the barley variety. The DIFF=CONTROL(’1’) option requests tests of least squares means differences
against the first variety.

The “Model Information” table in Output 41.4.1 describes the model and methods used in fitting the statis-
tical model. It is assumed here that the data are binomial proportions.

Output 41.4.1 Model Information in Pseudo-binomial Analysis

The GLIMMIX Procedure

Model Information

Data Set WORK.BLOTCH
Response Variable prop
Response Distribution Binomial
Link Function Logit
Variance Function Default
Variance Matrix Diagonal
Estimation Technique Maximum Likelihood
Degrees of Freedom Method Residual

The “Class Level Information” table in Output 41.4.2 lists the number of levels of the Site and Variety effects
and their values. All 90 observations read from the data are used in the analysis.

Output 41.4.2 Class Levels and Number of Observations

Class Level Information

Class Levels Values

site 9 1 2 3 4 5 6 7 8 9
variety 10 1 2 3 4 5 6 7 8 9 10

Number of Observations Read 90
Number of Observations Used 90
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In Output 41.4.3, the “Dimensions” table shows that the model does not contain G-side random effects.
There is a single covariance parameter, which corresponds to �. The “Optimization Information” table
shows that the optimization comprises 18 parameters (Output 41.4.3). These correspond to the 18 nonsin-
gular columns of the X0X matrix.

Output 41.4.3 Model Fit in Pseudo-binomial Analysis

Dimensions

Covariance Parameters 1
Columns in X 20
Columns in Z 0
Subjects (Blocks in V) 1
Max Obs per Subject 90

Optimization Information

Optimization Technique Newton-Raphson
Parameters in Optimization 18
Lower Boundaries 0
Upper Boundaries 0
Fixed Effects Not Profiled

Fit Statistics

-2 Log Likelihood 57.15
AIC (smaller is better) 93.15
AICC (smaller is better) 102.79
BIC (smaller is better) 138.15
CAIC (smaller is better) 156.15
HQIC (smaller is better) 111.30
Pearson Chi-Square 6.39
Pearson Chi-Square / DF 0.09

There are significant site and variety effects in this model based on the approximate Type III F tests (Out-
put 41.4.4).

Output 41.4.4 Tests of Site and Variety Effects in Pseudo-binomial Analysis

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

site 8 72 18.25 <.0001
variety 9 72 13.85 <.0001

Output 41.4.5 displays the Variety least squares means for this analysis. These are obtained by averaging

logit.b�ij / Db�ij



Example 41.4: Quasi-likelihood Estimation for Proportions with Unknown Distribution F 3167

across the sites. In other words, LS-means are computed on the linked scale where the model effects are
additive. Note that the least squares means are ordered by variety. The estimate of the expected proportion
of infected leaf area for the first variety is

b�:;1 D 1

1C expf4:38g
D 0:0124

and that for the last variety is

b�:;10 D 1

1C expf0:127g
D 0:468

Output 41.4.5 Variety Least Squares Means in Pseudo-binomial Analysis

variety Least Squares Means

Standard
variety Estimate Error DF t Value Pr > |t|

1 -4.3800 0.5643 72 -7.76 <.0001
2 -4.2300 0.5383 72 -7.86 <.0001
3 -3.6906 0.4623 72 -7.98 <.0001
4 -3.3319 0.4239 72 -7.86 <.0001
5 -2.7653 0.3768 72 -7.34 <.0001
6 -2.0089 0.3320 72 -6.05 <.0001
7 -1.8095 0.3228 72 -5.61 <.0001
8 -1.0380 0.2960 72 -3.51 0.0008
9 -0.8800 0.2921 72 -3.01 0.0036

10 -0.1270 0.2808 72 -0.45 0.6523

Because of the ordering of the least squares means, the differences against the first variety are also ordered
from smallest to largest (Output 41.4.6).

Output 41.4.6 Variety Differences against the First Variety

Differences of variety Least Squares Means

Standard
variety _variety Estimate Error DF t Value Pr > |t|

2 1 0.1501 0.7237 72 0.21 0.8363
3 1 0.6895 0.6724 72 1.03 0.3086
4 1 1.0482 0.6494 72 1.61 0.1109
5 1 1.6147 0.6257 72 2.58 0.0119
6 1 2.3712 0.6090 72 3.89 0.0002
7 1 2.5705 0.6065 72 4.24 <.0001
8 1 3.3420 0.6015 72 5.56 <.0001
9 1 3.5000 0.6013 72 5.82 <.0001

10 1 4.2530 0.6042 72 7.04 <.0001
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This analysis depends on your choice for the variance function that was implied by the binomial distribution.
You can diagnose the distributional assumption by examining various graphical diagnostics measures. The
following statements request a panel display of the Pearson-type residuals:

ods graphics on;
ods select PearsonPanel;
proc glimmix data=blotch plots=pearsonpanel;

class site variety;
model prop = site variety / link=logit dist=binomial;
random _residual_;

run;
ods graphics off;

Output 41.4.7 clearly indicates that the chosen variance function is not appropriate for these data. As �
approaches zero or one, the variability in the residuals is less than that implied by the binomial variance
function.

Output 41.4.7 Panel of Pearson-Type Residuals in Pseudo-binomial Analysis
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To remedy this situation, McCullagh and Nelder (1989) consider instead the variance function

VarŒPropij � D �
2
ij .1 � �ij /

2

Imagine two varieties with �:i D 0:1 and �:k D 0:5. Under the binomial variance function, the variance
of the proportion for variety k is 2.77 times larger than that for variety i. Under the revised model this ratio
increases to 2:772 D 7:67.

The analysis of the revised model is obtained with the next set of GLIMMIX statements. Because you
need to model a variance function that does not correspond to any of the built-in distributions, you need to
supply a function with an assignment to the automatic variable _VARIANCE_. The GLIMMIX procedure
then considers the distribution of the data as unknown. The corresponding estimation technique is quasi-
likelihood. Because this model does not include an extra scale parameter, you can drop the RANDOM
_RESIDUAL_ statement from the analysis.

ods graphics on;
ods select ModelInfo FitStatistics LSMeans Diffs PearsonPanel;
proc glimmix data=blotch plots=pearsonpanel;

class site variety;
_variance_ = _mu_**2 * (1-_mu_)**2;
model prop = site variety / link=logit;
lsmeans variety / diff=control('1');

run;
ods graphics off;

The “Model Information” table in Output 41.4.8 now displays the distribution as “Unknown,” because of
the assignment made in the GLIMMIX statements to _VARIANCE_. The table also shows the expression
evaluated as the variance function.

Output 41.4.8 Model Information in Quasi-likelihood Analysis

The GLIMMIX Procedure

Model Information

Data Set WORK.BLOTCH
Response Variable prop
Response Distribution Unknown
Link Function Logit
Variance Function _mu_**2 * (1-_mu_)**2
Variance Matrix Diagonal
Estimation Technique Quasi-Likelihood
Degrees of Freedom Method Residual

The fit statistics of the model are now expressed in terms of the log quasi-likelihood. It is computed as

9X
iD1

10X
jD1

Z �ij

yij

yij � t

t2.1 � t /2
dt

Twice the negative of this sum equals –85.74, which is displayed in the “Fit Statistics” table (Output 41.4.9).
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The scaled Pearson statistic is now 0.99. Inclusion of an extra scale parameter � would have little or no
effect on the results.

Output 41.4.9 Fit Statistics in Quasi-likelihood Analysis

Fit Statistics

-2 Log Quasi-Likelihood -85.74
Quasi-AIC (smaller is better) -49.74
Quasi-AICC (smaller is better) -40.11
Quasi-BIC (smaller is better) -4.75
Quasi-CAIC (smaller is better) 13.25
Quasi-HQIC (smaller is better) -31.60
Pearson Chi-Square 71.17
Pearson Chi-Square / DF 0.99

The panel of Pearson-type residuals now shows a much more adequate distribution for the residuals and a
reduction in the number of outlying residuals (Output 41.4.10).

Output 41.4.10 Panel of Pearson-Type Residuals (Quasi-likelihood)
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The least squares means are no longer ordered in size by variety (Output 41.4.11). For example, logit.b�:1/ >
logit.b�:2/. Under the revised model, the second variety has a greater percentage of its leaf area covered by
blotch, compared to the first variety. Varieties 5 and 6 and varieties 8 and 9 show similar reversal in ranking.

Output 41.4.11 Variety Least Squares Means in Quasi-likelihood Analysis

variety Least Squares Means

Standard
variety Estimate Error DF t Value Pr > |t|

1 -4.0453 0.3333 72 -12.14 <.0001
2 -4.5126 0.3333 72 -13.54 <.0001
3 -3.9664 0.3333 72 -11.90 <.0001
4 -3.0912 0.3333 72 -9.27 <.0001
5 -2.6927 0.3333 72 -8.08 <.0001
6 -2.7167 0.3333 72 -8.15 <.0001
7 -1.7052 0.3333 72 -5.12 <.0001
8 -0.7827 0.3333 72 -2.35 0.0216
9 -0.9098 0.3333 72 -2.73 0.0080

10 -0.1580 0.3333 72 -0.47 0.6369

Interestingly, the standard errors are constant among the LS-means (Output 41.4.11) and among the LS-
means differences (Output 41.4.12). This is due to the fact that for the logit link

@�

@�
D �.1 � �/

which cancels with the square root of the variance function in the estimating equations. The analysis is thus
orthogonal.

Output 41.4.12 Variety Differences in Quasi-likelihood Analysis

Differences of variety Least Squares Means

Standard
variety _variety Estimate Error DF t Value Pr > |t|

2 1 -0.4673 0.4714 72 -0.99 0.3249
3 1 0.07885 0.4714 72 0.17 0.8676
4 1 0.9541 0.4714 72 2.02 0.0467
5 1 1.3526 0.4714 72 2.87 0.0054
6 1 1.3286 0.4714 72 2.82 0.0062
7 1 2.3401 0.4714 72 4.96 <.0001
8 1 3.2626 0.4714 72 6.92 <.0001
9 1 3.1355 0.4714 72 6.65 <.0001

10 1 3.8873 0.4714 72 8.25 <.0001
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Example 41.5: Joint Modeling of Binary and Count Data
Clustered data arise when multiple observations are collected on the same sampling or experimental unit.
Often, these multiple observations refer to the same attribute measured at different points in time or space.
This leads to repeated measures, longitudinal, and spatial data, which are special forms of multivariate data.
A different class of multivariate data arises when the multiple observations refer to different attributes.

The data set hernio, created in the following DATA step, provides an example of a bivariate outcome vari-
able. It reflects the condition and length of hospital stay for 32 herniorrhaphy patients. These data are based
on data given by Mosteller and Tukey (1977) and reproduced in Hand et al. (1994, pp. 390, 391). The data
set that follows does not contain all the covariates given in these sources. The response variables are leave
and los; these denote the condition of the patient upon leaving the operating room and the length of hospital
stay after the operation (in days). The variable leave takes on the value one if a patient experiences a routine
recovery, and the value zero if postoperative intensive care was required. The binary variable OKstatus
distinguishes patients based on their postoperative physical status (“1” implies better status).

data hernio;
input patient age gender$ OKstatus leave los;
datalines;

1 78 m 1 0 9
2 60 m 1 0 4
3 68 m 1 1 7
4 62 m 0 1 35
5 76 m 0 0 9
6 76 m 1 1 7
7 64 m 1 1 5
8 74 f 1 1 16
9 68 m 0 1 7

10 79 f 1 0 11
11 80 f 0 1 4
12 48 m 1 1 9
13 35 f 1 1 2
14 58 m 1 1 4
15 40 m 1 1 3
16 19 m 1 1 4
17 79 m 0 0 3
18 51 m 1 1 5
19 57 m 1 1 8
20 51 m 0 1 8
21 48 m 1 1 3
22 48 m 1 1 5
23 66 m 1 1 8
24 71 m 1 0 2
25 75 f 0 0 7
26 2 f 1 1 0
27 65 f 1 0 16
28 42 f 1 0 3
29 54 m 1 0 2
30 43 m 1 1 3
31 4 m 1 1 3
32 52 m 1 1 8
;
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While the response variable los is a Poisson count variable, the response variable leave is a binary variable.
You can perform separate analysis for the two outcomes, for example, by fitting a logistic model for the
operating room exit condition and a Poisson regression model for the length of hospital stay. This, however,
would ignore the correlation between the two outcomes. Intuitively, you would expect that the length of
postoperative hospital stay is longer for those patients who had more tenuous exit conditions.

The following DATA step converts the data set hernio from the multivariate form to the univariate form. In
the multivariate form the responses are stored in separate variables. The GLIMMIX procedure requires the
univariate data structure.

data hernio_uv;
length dist $7;
set hernio;
response = (leave=1);
dist = "Binary";
output;
response = los;
dist = "Poisson";
output;
keep patient age OKstatus response dist;

run;

This DATA step expands the 32 observations in the data set hernio into 64 observations, stacking two obser-
vations per patient. The character variable dist identifies the distribution that is assumed for the respective
observations within a patient. The first observation for each patient corresponds to the binary response.

The following GLIMMIX statements fit a logistic regression model with two regressors (age and OKStatus)
to the binary observations:

proc glimmix data=hernio_uv(where=(dist="Binary"));
model response(event='1') = age OKStatus / s dist=binary;

run;

The EVENT=(’1’) response option requests that PROC GLIMMIX model the probability Pr.leave D 1/—
that is, the probability of routine recovery. The fit statistics and parameter estimates for this univariate
analysis are shown in Output 41.5.1. The coefficient for the age effect is negative (–0.07725) and marginally
significant at the 5% level (p = 0.0491). The negative sign indicates that the probability of routine recovery
decreases with age. The coefficient for the OKStatus variable is also negative. Its large standard error and
the p-value of 0.7341 indicate, however, that this regressor is not significant.
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Output 41.5.1 Univariate Logistic Regression

The GLIMMIX Procedure

Fit Statistics

-2 Log Likelihood 32.77
AIC (smaller is better) 38.77
AICC (smaller is better) 39.63
BIC (smaller is better) 43.17
CAIC (smaller is better) 46.17
HQIC (smaller is better) 40.23
Pearson Chi-Square 30.37
Pearson Chi-Square / DF 1.05

Parameter Estimates

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 5.7694 2.8245 29 2.04 0.0503
age -0.07725 0.03761 29 -2.05 0.0491
OKstatus -0.3516 1.0253 29 -0.34 0.7341

Based on the univariate logistic regression analysis, you would probably want to revisit the model, examine
other regressor variables, test for gender effects and interactions, and so forth. The two-regressor model is
sufficient for this example. It is illustrative to trace the relative importance of the two regressors through
various types of models.

The next statements fit the same regressors to the count data:

proc glimmix data=hernio_uv(where=(dist="Poisson"));
model response = age OKStatus / s dist=Poisson;

run;

For this response, both regressors appear to make significant contributions at the 5% significance level
(Output 41.5.2). The sign of the coefficient seems appropriate; the length of hospital stay should increase
with patient age and be shorter for patients with better preoperative health. The magnitude of the scaled
Pearson statistic (4.48) indicates, however, that there is considerable overdispersion in this model. This
could be due to omitted variables or an improper distributional assumption. The importance of preoperative
health status, for example, can change with a patient’s age, which could call for an interaction term.
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Output 41.5.2 Univariate Poisson Regression

The GLIMMIX Procedure

Fit Statistics

-2 Log Likelihood 215.52
AIC (smaller is better) 221.52
AICC (smaller is better) 222.38
BIC (smaller is better) 225.92
CAIC (smaller is better) 228.92
HQIC (smaller is better) 222.98
Pearson Chi-Square 129.98
Pearson Chi-Square / DF 4.48

Parameter Estimates

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 1.2640 0.3393 29 3.72 0.0008
age 0.01525 0.004454 29 3.42 0.0019
OKstatus -0.3301 0.1562 29 -2.11 0.0433

You can also model both responses jointly. The following statements request a multivariate analysis:

proc glimmix data=hernio_uv;
class dist;
model response(event='1') = dist dist*age dist*OKstatus /

noint s dist=byobs(dist);
run;

The DIST=BYOBS option in the MODEL statement instructs the GLIMMIX procedure to examine the
variable dist in order to identify the distribution of an observation. The variable can be character or numeric.
See the DIST= option of the MODEL statement for a list of the numeric codes for the various distributions
that are compatible with the DIST=BYOBS formulation. Because no LINK= option is specified, the link
functions are chosen as the default links that correspond to the respective distributions. In this case, the
logit link is applied to the binary observations and the log link is applied to the Poisson outcomes. The dist
variable is also listed in the CLASS statement, which enables you to use interaction terms in the MODEL
statement to vary the regression coefficients by response distribution. The NOINT option is used here
so that the parameter estimates of the joint model are directly comparable to those in Output 41.5.1 and
Output 41.5.2.

The “Fit Statistics” and “Parameter Estimates” tables of this bivariate estimation process are shown in
Output 41.5.3.
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Output 41.5.3 Bivariate Analysis – Independence

The GLIMMIX Procedure

Fit Statistics

Description Binary Poisson Total

-2 Log Likelihood 32.77 215.52 248.29
AIC (smaller is better) 44.77 227.52 260.29
AICC (smaller is better) 48.13 230.88 261.77
BIC (smaller is better) 53.56 236.32 273.25
CAIC (smaller is better) 59.56 242.32 279.25
HQIC (smaller is better) 47.68 230.44 265.40
Pearson Chi-Square 30.37 129.98 160.35
Pearson Chi-Square / DF 1.05 4.48 2.76

Parameter Estimates

Standard
Effect dist Estimate Error DF t Value Pr > |t|

dist Binary 5.7694 2.8245 58 2.04 0.0456
dist Poisson 1.2640 0.3393 58 3.72 0.0004
age*dist Binary -0.07725 0.03761 58 -2.05 0.0445
age*dist Poisson 0.01525 0.004454 58 3.42 0.0011
OKstatus*dist Binary -0.3516 1.0253 58 -0.34 0.7329
OKstatus*dist Poisson -0.3301 0.1562 58 -2.11 0.0389

The “Fit Statistics” table now contains a separate column for each response distribution, as well as an
overall contribution. Because the model does not specify any random effects or R-side correlations, the log
likelihoods are additive. The parameter estimates and their standard errors in this joint model are identical to
those in Output 41.5.1 and Output 41.5.2. The p-values reflect the larger “sample size” in the joint analysis.
Note that the coefficients would be different from the separate analyses if the dist variable had not been used
to form interactions with the model effects.

There are two ways in which the correlations between the two responses for the same patient can be in-
corporated. You can induce them through shared random effects or model the dependency directly. The
following statements fit a model that induces correlation:

proc glimmix data=hernio_uv;
class patient dist;
model response(event='1') = dist dist*age dist*OKstatus /

noint s dist=byobs(dist);
random int / subject=patient;

run;

Notice that the patient variable has been added to the CLASS statement and as the SUBJECT= effect in the
RANDOM statement.
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The “Fit Statistics” table in Output 41.5.4 no longer has separate columns for each response distribution,
because the data are not independent. The log (pseudo-)likelihood does not factor into additive component
that correspond to distributions. Instead, it factors into components associated with subjects.

Output 41.5.4 Bivariate Analysis – Mixed Model

The GLIMMIX Procedure

Fit Statistics

-2 Res Log Pseudo-Likelihood 226.71
Generalized Chi-Square 52.25
Gener. Chi-Square / DF 0.90

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

Intercept patient 0.2990 0.1116

Solutions for Fixed Effects

Standard
Effect dist Estimate Error DF t Value Pr > |t|

dist Binary 5.7783 2.9048 29 1.99 0.0562
dist Poisson 0.8410 0.5696 29 1.48 0.1506
age*dist Binary -0.07572 0.03791 29 -2.00 0.0552
age*dist Poisson 0.01875 0.007383 29 2.54 0.0167
OKstatus*dist Binary -0.4697 1.1251 29 -0.42 0.6794
OKstatus*dist Poisson -0.1856 0.3020 29 -0.61 0.5435

The estimate of the variance of the random patient intercept is 0.2990, and the estimated standard error of
this variance component estimate is 0.1116. There appears to be significant patient-to-patient variation in
the intercepts. The estimates of the fixed effects as well as their estimated standard errors have changed
from the bivariate-independence analysis (see Output 41.5.3). When the length of hospital stay and the
postoperative condition are modeled jointly, the preoperative health status (variable OKStatus) no longer
appears significant. Compare this result to Output 41.5.3; in the separate analyses the initial health status
was a significant predictor of the length of hospital stay. A further joint analysis of these data would probably
remove this predictor from the model entirely.

A joint model of the second kind, where correlations are modeled directly, is fit with the following GLIM-
MIX statements:

proc glimmix data=hernio_uv;
class patient dist;
model response(event='1') = dist dist*age dist*OKstatus /

noint s dist=byobs(dist);
random _residual_ / subject=patient type=chol;

run;
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Instead of a shared G-side random effect, an R-side covariance structure is used to model the correlations.
It is important to note that this is a marginal model that models covariation on the scale of the data. The
previous model involves the Z
 random components inside the linear predictor.

The _RESIDUAL_ keyword instructs PROC GLIMMIX to model the R-side correlations. Because of the
SUBJECT=PATIENT option, data from different patients are independent, and data from a single patient
follow the covariance model specified with the TYPE= option. In this case, a generally unstructured 2�2 co-
variance matrix is modeled, but in its Cholesky parameterization. This ensures that the resulting covariance
matrix is at least positive semidefinite and stabilizes the numerical optimizations.

Output 41.5.5 Bivariate Analysis – Marginal Correlated Error Model

The GLIMMIX Procedure

Fit Statistics

-2 Res Log Pseudo-Likelihood 240.98
Generalized Chi-Square 58.00
Gener. Chi-Square / DF 1.00

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

CHOL(1,1) patient 1.0162 0.1334
CHOL(2,1) patient 0.3942 0.3893
CHOL(2,2) patient 2.0819 0.2734

Solutions for Fixed Effects

Standard
Effect dist Estimate Error DF t Value Pr > |t|

dist Binary 5.6514 2.8283 26 2.00 0.0563
dist Poisson 1.2463 0.7189 26 1.73 0.0948
age*dist Binary -0.07568 0.03765 26 -2.01 0.0549
age*dist Poisson 0.01548 0.009432 26 1.64 0.1128
OKstatus*dist Binary -0.3421 1.0384 26 -0.33 0.7445
OKstatus*dist Poisson -0.3253 0.3310 26 -0.98 0.3349

The “Covariance Parameter Estimates” table in Output 41.5.5 contains three entries for this model, corre-
sponding to a .2 � 2/ covariance matrix for each patient. The Cholesky root of the R matrix is

L D
�
1:0162 0

0:3942 2:0819

�
so that the covariance matrix can be obtained as

LL0 D
�
1:0162 0

0:3942 2:0819

� �
1:0162 0:3942

0 2:0819

�
D

�
1:0326 0:4005

0:4005 4:4897

�
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This is not the covariance matrix of the data, however, because the variance functions need to be accounted
for.

The p-values in the “Solutions for Fixed Effects” table indicate the same pattern of significance and non-
significance as in the conditional model with random patient intercepts.

Example 41.6: Radial Smoothing of Repeated Measures Data
This example of a repeated measures study is taken from Diggle, Liang, and Zeger (1994, p. 100). The
data consist of body weights of 27 cows, measured at 23 unequally spaced time points over a period of
approximately 22 months. Following Diggle, Liang, and Zeger (1994), one animal is removed from the
analysis, one observation is removed according to their Figure 5.7, and the time is shifted to start at 0 and is
measured in 10-day increments. The design is a 2�2 factorial, and the factors are the infection of an animal
with M. paratuberculosis and whether the animal is receiving iron dosing.

The following DATA steps create the data and arrange them in univariate format.

data times;
input time1-time23;
datalines;

122 150 166 179 219 247 276 296 324 354 380 445
478 508 536 569 599 627 655 668 723 751 781

;

data cows;
if _n_ = 1 then merge times;
array t{23} time1 - time23;
array w{23} weight1 - weight23;
input cow iron infection weight1-weight23 @@;
do i=1 to 23;

weight = w{i};
tpoint = (t{i}-t{1})/10;
output;

end;
keep cow iron infection tpoint weight;
datalines;
1 0 0 4.7 4.905 5.011 5.075 5.136 5.165 5.298 5.323

5.416 5.438 5.541 5.652 5.687 5.737 5.814 5.799
5.784 5.844 5.886 5.914 5.979 5.927 5.94

2 0 0 4.868 5.075 5.193 5.22 5.298 5.416 5.481 5.521
5.617 5.635 5.687 5.768 5.799 5.872 5.886 5.872
5.914 5.966 5.991 6.016 6.087 6.098 6.153

3 0 0 4.868 5.011 5.136 5.193 5.273 5.323 5.416 5.46
5.521 5.58 5.617 5.687 5.72 5.753 5.784 5.784
5.784 5.814 5.829 5.872 5.927 5.9 5.991

4 0 0 4.828 5.011 5.136 5.193 5.273 5.347 5.438 5.561
5.541 5.598 5.67 . 5.737 5.844 5.858 5.872
5.886 5.927 5.94 5.979 6.052 6.028 6.12

5 1 0 4.787 4.977 5.043 5.136 5.106 5.298 5.298 5.371
5.438 5.501 5.561 5.652 5.67 5.737 5.784 5.768
5.784 5.784 5.829 5.858 5.914 5.9 5.94



3180 F Chapter 41: The GLIMMIX Procedure

6 1 0 4.745 4.868 5.043 5.106 5.22 5.298 5.347 5.347
5.416 5.501 5.561 5.58 5.687 5.72 5.737 5.72
5.737 5.753 5.768 5.784 5.844 5.844 5.9

7 1 0 4.745 4.905 5.011 5.106 5.165 5.273 5.371 5.416
5.416 5.521 5.541 5.635 5.687 5.704 5.784 5.768
5.768 5.814 5.829 5.858 5.94 5.94 6.004

8 0 1 4.942 5.106 5.136 5.193 5.298 5.347 5.46 5.521
5.561 5.58 5.635 5.704 5.784 5.823 5.858 5.9
5.94 5.991 6.016 6.064 6.052 6.016 5.979

9 0 1 4.605 4.745 4.868 4.905 4.977 5.22 5.165 5.22
5.22 5.247 5.298 5.416 5.501 5.521 5.58 5.58
5.635 5.67 5.72 5.753 5.799 5.829 5.858

10 0 1 4.7 4.868 4.905 4.977 5.011 5.106 5.165 5.22
5.22 5.22 5.273 5.384 5.438 5.438 5.501 5.501
5.541 5.598 5.58 5.635 5.687 5.72 5.704

11 0 1 4.828 5.011 5.075 5.165 5.247 5.323 5.394 5.46
5.46 5.501 5.541 5.609 5.687 5.704 5.72 5.704
5.704 5.72 5.737 5.768 5.858 5.9 5.94

12 0 1 4.7 4.828 4.905 5.011 5.075 5.165 5.247 5.298
5.298 5.323 5.416 5.505 5.561 5.58 5.561 5.635
5.687 5.72 5.72 5.737 5.784 5.814 5.799

13 0 1 4.828 5.011 5.075 5.136 5.22 5.273 5.347 5.416
5.438 5.416 5.521 5.628 5.67 5.687 5.72 5.72
5.799 5.858 5.872 5.914 5.94 5.991 6.016

14 0 1 4.828 4.942 5.011 5.075 5.075 5.22 5.273 5.298
5.323 5.298 5.394 5.489 5.541 5.58 5.617 5.67
5.704 5.753 5.768 5.814 5.872 5.927 5.927

15 0 1 4.745 4.905 4.977 5.075 5.193 5.22 5.298 5.323
5.394 5.394 5.438 5.583 5.617 5.652 5.687 5.72
5.753 5.768 5.814 5.844 5.886 5.886 5.886

16 0 1 4.7 4.868 5.011 5.043 5.106 5.165 5.247 5.298
5.347 5.371 5.438 5.455 5.617 5.635 5.704 5.737
5.784 5.768 5.814 5.844 5.886 5.94 5.927

17 1 1 4.605 4.787 4.828 4.942 5.011 5.136 5.22 5.247
5.273 5.247 5.347 5.366 5.416 5.46 5.541 5.481
5.501 5.635 5.652 5.598 5.635 5.635 5.598

18 1 1 4.828 4.977 5.011 5.136 5.273 5.298 5.371 5.46
5.416 5.416 5.438 5.557 5.617 5.67 5.72 5.72
5.799 5.858 5.886 5.914 5.979 6.004 6.028

19 1 1 4.7 4.905 4.942 5.011 5.043 5.136 5.193 5.193
5.247 5.22 5.323 5.338 5.371 5.394 5.438 5.416
5.501 5.561 5.541 5.58 5.652 5.67 5.704

20 1 1 4.745 4.905 4.977 5.043 5.136 5.273 5.347 5.394
5.416 5.394 5.521 5.617 5.617 5.617 5.67 5.635
5.652 5.687 5.652 5.617 5.687 5.768 5.814

21 1 1 4.787 4.942 4.977 5.106 5.165 5.247 5.323 5.416
5.394 5.371 5.438 5.521 5.521 5.561 5.635 5.617
5.687 5.72 5.737 5.737 5.768 5.768 5.704

22 1 1 4.605 4.828 4.828 4.977 5.043 5.165 5.22 5.273
5.247 5.22 5.298 5.375 5.371 5.416 5.501 5.501
5.521 5.561 5.617 5.635 5.72 5.737 5.768

23 1 1 4.7 4.905 5.011 5.075 5.106 5.22 5.22 5.298
5.323 5.347 5.416 5.472 5.501 5.541 5.598 5.598
5.598 5.652 5.67 5.704 5.737 5.768 5.784
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24 1 1 4.745 4.942 5.011 5.075 5.106 5.247 5.273 5.323
5.347 5.371 5.416 5.481 5.501 5.541 5.598 5.598
5.635 5.687 5.704 5.72 5.829 5.844 5.9

25 1 1 4.654 4.828 4.828 4.977 4.977 5.043 5.136 5.165
5.165 5.165 5.193 5.204 5.22 5.273 5.371 5.347
5.46 5.58 5.635 5.67 5.753 5.799 5.844

26 1 1 4.828 4.977 5.011 5.106 5.165 5.22 5.273 5.323
5.371 5.394 5.46 5.576 5.652 5.617 5.687 5.67
5.72 5.784 5.784 5.784 5.829 5.814 5.844

;

The mean response profiles of the cows are not of particular interest; what matters are inferences about the
Iron effect, the Infection effect, and their interaction. Nevertheless, the body weight of the cows changes
over the 22-month period, and you need to account for these changes in the analysis. A reasonable approach
is to apply the approximate low-rank smoother to capture the trends over time. This approach frees you
from having to stipulate a parametric model for the response trajectories over time. In addition, you can test
hypotheses about the smoothing parameter; for example, whether it should be varied by treatment.

The following statements fit a model with a 2� 2 factorial treatment structure and smooth trends over time,
choosing the Newton-Raphson algorithm with ridging for the optimization:

proc glimmix data=cows;
t2 = tpoint / 100;
class cow iron infection;
model weight = iron infection iron*infection tpoint;
random t2 / type=rsmooth subject=cow

knotmethod=kdtree(bucket=100 knotinfo);
output out=gmxout pred(blup)=pred;
nloptions tech=newrap;

run;

The continuous time effect appears in both the MODEL statement (tpoint) and the RANDOM statement (t2).
Because the variance of the radial smoothing component depends on the temporal metric, the time scale was
rescaled for the RANDOM effect to move the parameter estimate away from the boundary. The knots of the
radial smoother are selected as the vertices of a k-d tree. Specifying BUCKET=100 sets the bucket size of
the tree to b = 100. Because measurements at each time point are available for 26 (or 25) cows, this groups
approximately four time points in a single bucket. The KNOTINFO keyword of the KNOTMETHOD=
option requests a printout of the knot locations for the radial smoother. The OUTPUT statement saves the
predictions of the mean of each observations to the data set gmxout. Finally, the TECH=NEWRAP option
in the NLOPTIONS statement specifies the Newton-Raphson algorithm for the optimization technique.

The “Class Level Information” table lists the number of levels of the Cow, Iron, and Infection effects (Out-
put 41.6.1).
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Output 41.6.1 Model Information and Class Levels in Repeated Measures Analysis

The GLIMMIX Procedure

Model Information

Data Set WORK.COWS
Response Variable weight
Response Distribution Gaussian
Link Function Identity
Variance Function Default
Variance Matrix Blocked By cow
Estimation Technique Restricted Maximum Likelihood
Degrees of Freedom Method Containment

Class Level Information

Class Levels Values

cow 26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26

iron 2 0 1
infection 2 0 1

The “Radial Smoother Knots for RSmooth(t2)” table displays the knots computed from the vertices of the
t2 k-d tree (Output 41.6.2). Notice that knots are spaced unequally and that the extreme time points are
among the knot locations. The “Number of Observations” table shows that one observation was not used in
the analysis. The 12th observation for cow 4 has a missing value.

Output 41.6.2 Knot Information and Number of Observations

Radial Smoother
Knots for

RSmooth(t2)

Knot
Number t2

1 0
2 0.04400
3 0.1250
4 0.2020
5 0.3230
6 0.4140
7 0.5050
8 0.6010
9 0.6590

Number of Observations Read 598
Number of Observations Used 597
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The “Dimensions” table shows that the model contains only two covariance parameters, the G-side variance
of the spline coefficients (�2) and the R-side scale parameter (�, Output 41.6.3). For each subject (cow),
there are nine columns in the Z matrix, one per knot location. The GLIMMIX procedure processes these
data by subjects (cows).

Output 41.6.3 Dimensions Information in Repeated Measures Analysis

Dimensions

G-side Cov. Parameters 1
R-side Cov. Parameters 1
Columns in X 10
Columns in Z per Subject 9
Subjects (Blocks in V) 26
Max Obs per Subject 23

The “Optimization Information” table displays information about the optimization process. Because fixed
effects and the residual scale parameter can be profiled from the optimization, the iterative algorithm in-
volves only a single covariance parameter, the variance of the spline coefficients (Output 41.6.4).

Output 41.6.4 Optimization Information in Repeated Measures Analysis

Optimization Information

Optimization Technique Newton-Raphson
Parameters in Optimization 1
Lower Boundaries 1
Upper Boundaries 0
Fixed Effects Profiled
Residual Variance Profiled
Starting From Data

After 11 iterations, the optimization process terminates (Output 41.6.5). In this case, the absolute gradient
convergence criterion was met.
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Output 41.6.5 Iteration History and Convergence Status

Iteration History

Objective Max
Iteration Restarts Evaluations Function Change Gradient

0 0 4 -1302.549272 . 20.33682
1 0 3 -1451.587367 149.03809501 9.940495
2 0 3 -1585.640946 134.05357887 4.71531
3 0 3 -1694.516203 108.87525722 2.176741
4 0 3 -1775.290458 80.77425512 0.978577
5 0 3 -1829.966584 54.67612585 0.425724
6 0 3 -1862.878184 32.91160012 0.175992
7 0 3 -1879.329133 16.45094875 0.066061
8 0 3 -1885.175082 5.84594887 0.020137
9 0 3 -1886.238032 1.06295071 0.00372

10 0 3 -1886.288519 0.05048659 0.000198
11 0 3 -1886.288673 0.00015425 6.364E-7

Convergence criterion (ABSGCONV=0.00001) satisfied.

The generalized chi-square statistic in the “Fit Statistics” table is small for this model (Output 41.6.6). There
is very little residual variation. The radial smoother is associated with 433.55 residual degrees of freedom,
computed as 597 minus the trace of the smoother matrix.

Output 41.6.6 Fit Statistics in Repeated Measures Analysis

Fit Statistics

-2 Res Log Likelihood -1886.29
AIC (smaller is better) -1882.29
AICC (smaller is better) -1882.27
BIC (smaller is better) -1879.77
CAIC (smaller is better) -1877.77
HQIC (smaller is better) -1881.56
Generalized Chi-Square 0.47
Gener. Chi-Square / DF 0.00
Radial Smoother df(res) 433.55

The “Covariance Parameter Estimates” table in Output 41.6.7 displays the estimates of the covariance pa-
rameters. The variance of the random spline coefficients is estimated asb�2 D 0:5961, and the scale param-
eter (=residual variance) estimate isb� = 0.0008.
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Output 41.6.7 Estimated Covariance Parameters

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

Var[RSmooth(t2)] cow 0.5961 0.08144
Residual 0.000800 0.000059

The “Type III Tests of Fixed Effects” table displays F tests for the fixed effects in the MODEL statement
(Output 41.6.8). There is a strong infection effect as well as the absence of an interaction between infection
with M. paratuberculosis and iron dosing. It is important to note, however, that the interpretation of these
tests rests on the assumption that the random effects in the mixed model have zero mean; in this case, the
radial smoother coefficients.

Output 41.6.8 Tests of Fixed Effects

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

iron 1 358 3.59 0.0588
infection 1 358 21.16 <.0001
iron*infection 1 358 0.09 0.7637
tpoint 1 358 53.88 <.0001

A graph of the observed data and fitted profiles in the four groups is produced with the following statements
(Output 41.6.9):

data plot;
set gmxout;
length group $26;
if (iron=0) and (infection=0) then group='Control Group (n=4)';
else if (iron=1) and (infection=0) then group='Iron - No Infection (n=3)';
else if (iron=0) and (infection=1) then group='No Iron - Infection (n=9)';
else group = 'Iron - Infection (n=10)';

run;
proc sort data=plot; by group cow;
run;

proc sgpanel data=plot noautolegend;
title 'Radial Smoothing With Cow-Specific Trends';
label tpoint='Time' weight='log(Weight)';
panelby group / columns=2 rows=2;
scatter x=tpoint y=weight;
series x=tpoint y=pred / group=cow lineattrs=GraphFit;

run;
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Output 41.6.9 Observed and Predicted Profiles

The trends are quite smooth, and you can see how the radial smoother adapts to the cow-specific profile.
This is the reason for the small scale parameter estimate,b� D 0:008. Comparing the panels at the top to the
panels at the bottom of Output 41.6.9 reveals the effect of Infection. A comparison of the panels on the left
to those on the right indicates the weak Iron effect.
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The smoothing parameter in this analysis is related to the covariance parameter estimates. Because there is
only one radial smoothing variance component, the amount of smoothing is the same in all four treatment
groups. To test whether the smoothing parameter should be varied by group, you can refine the analysis
of the previous model. The following statements fit the same general model, but they vary the covariance
parameters by the levels of the Iron*Infection interaction. This is accomplished with the GROUP= option in
the RANDOM statement.

ods select OptInfo FitStatistics CovParms;
proc glimmix data=cows;

t2 = tpoint / 100;
class cow iron infection;
model weight = iron infection iron*infection tpoint;
random t2 / type=rsmooth

subject=cow
group=iron*infection
knotmethod=kdtree(bucket=100);

nloptions tech=newrap;
run;

All observations that have the same value combination of the Iron and Infection effects share the same
covariance parameter. As a consequence, you obtain different smoothing parameters result in the four
groups.

In Output 41.6.10, the “Optimization Information” table shows that there are now four covariance parame-
ters in the optimization, one spline coefficient variance for each group.

Output 41.6.10 Analysis with Group-Specific Smoothing Parameter

The GLIMMIX Procedure

Optimization Information

Optimization Technique Newton-Raphson
Parameters in Optimization 4
Lower Boundaries 4
Upper Boundaries 0
Fixed Effects Profiled
Residual Variance Profiled
Starting From Data

Fit Statistics

-2 Res Log Likelihood -1887.95
AIC (smaller is better) -1877.95
AICC (smaller is better) -1877.85
BIC (smaller is better) -1871.66
CAIC (smaller is better) -1866.66
HQIC (smaller is better) -1876.14
Generalized Chi-Square 0.48
Gener. Chi-Square / DF 0.00
Radial Smoother df(res) 434.72
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Output 41.6.10 continued

Covariance Parameter Estimates

Standard
Cov Parm Subject Group Estimate Error

Var[RSmooth(t2)] cow iron*infection 0 0 0.4788 0.1922
Var[RSmooth(t2)] cow iron*infection 0 1 0.5152 0.1182
Var[RSmooth(t2)] cow iron*infection 1 0 0.4904 0.2195
Var[RSmooth(t2)] cow iron*infection 1 1 0.7105 0.1409
Residual 0.000807 0.000060

Varying this variance component by groups has changed the –2 Res Log Likelihood from –1886.29 to –
1887.95 (Output 41.6.10). The difference, 1.66, can be viewed (asymptotically) as the realization of a
chi-square random variable with three degrees of freedom. The difference is not significant (p = 0.64586).
The “Covariance Parameter Estimates” table confirms that the estimates of the spline coefficient variance
are quite similar in the four groups, ranging from 0.4788 to 0.7105.

Finally, you can apply a different technique for varying the temporal trends among the cows. From Out-
put 41.6.9 it appears that an assumption of parallel trends within groups might be reasonable. In other words,
you can fit a model in which the “overall” trend over time in each group is modeled nonparametrically, and
this trend is shifted up or down to capture the behavior of the individual cow. You can accomplish this with
the following statements:

ods select FitStatistics CovParms;
proc glimmix data=cows;

t2 = tpoint / 100;
class cow iron infection;
model weight = iron infection iron*infection tpoint;
random t2 / type=rsmooth

subject=iron*infection
knotmethod=kdtree(bucket=100);

random intercept / subject=cow;
output out=gmxout pred(blup)=pred;
nloptions tech=newrap;

run;

There are now two subject effects in this analysis. The first RANDOM statement applies the radial smooth-
ing and identifies the experimental conditions as the subject. For each condition, a separate realization of
the random spline coefficients is obtained. The second RANDOM statement adds a random intercept to the
trend for each cow. This random intercept results in the parallel shift of the trends over time.
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Results from this analysis are shown in Output 41.6.11.

Output 41.6.11 Analysis with Parallel Shifts

The GLIMMIX Procedure

Fit Statistics

-2 Res Log Likelihood -1788.52
AIC (smaller is better) -1782.52
AICC (smaller is better) -1782.48
BIC (smaller is better) -1788.52
CAIC (smaller is better) -1785.52
HQIC (smaller is better) -1788.52
Generalized Chi-Square 1.17
Gener. Chi-Square / DF 0.00
Radial Smoother df(res) 547.21

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

Var[RSmooth(t2)] iron*infection 0.5398 0.1940
Intercept cow 0.007122 0.002173
Residual 0.001976 0.000121

Because the parallel shift model is not nested within either one of the previous models, the models cannot
be compared with a likelihood ratio test. However, you can draw on the other fit statistics.

All statistics indicate that this model does not fit the data as well as the initial model that varies the spline
coefficients by cow. The Pearson chi-square statistic is more than twice as large as in the previous model,
indicating much more residual variation in the fit. On the other hand, this model generates only four sets of
spline coefficients, one for each treatment group, and thus retains more residual degrees of freedom.

The “Covariance Parameter Estimates” table in Output 41.6.11 displays the solutions for the covariance
parameters. The estimate of the variance of the spline coefficients is not that different from the estimate
obtained in the first model (0.5961). The residual variance, however, has more than doubled.

Using similar SAS statements as previously, you can produce a plot of the observed and predicted profiles
(Output 41.6.12).

The parallel shifts of the nonparametric smooths are clearly visible in Output 41.6.12. In the groups receiv-
ing only iron or only an infection, the parallel lines assumption holds quite well. In the control group and
the group receiving iron and the infection, the parallel shift assumption does not hold as well. Two of the
profiles in the iron-only group are nearly indistinguishable.
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Output 41.6.12 Observed and Predicted Profiles

This example demonstrates that mixed model smoothing techniques can be applied not only to achieve
scatter plot smoothing, but also to longitudinal or repeated measures data. You can then use the SUBJECT=
option in the RANDOM statement to obtain independent sets of spline coefficients for different subjects,
and the GROUP= option in the RANDOM statement to vary the degree of smoothing across groups. Also,
radial smoothers can be combined with other random effects. For the data considered here, the appropriate
model is one with a single smoothing parameter for all treatment group and cow-specific spline coefficients.
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Example 41.7: Isotonic Contrasts for Ordered Alternatives
Dose response studies often focus on testing for monotone increasing or decreasing behavior in the mean
values of the dependent variable. Hirotsu and Srivastava (2000) demonstrate one approach by using data
that originally appeared in Moriguchi (1976). The data, which follow, consist of ferrite cores subjected to
four increasing temperatures. The response variable is the magnetic force of each core.

data FerriteCores;
do Temp = 1 to 4;

do rep = 1 to 5; drop rep;
input MagneticForce @@;
output;

end;
end;
datalines;

10.8 9.9 10.7 10.4 9.7
10.7 10.6 11.0 10.8 10.9
11.9 11.2 11.0 11.1 11.3
11.4 10.7 10.9 11.3 11.7
;

It is of interest to test whether the magnetic force of the cores rises monotonically with temperature. The
approach of Hirotsu and Srivastava (2000) depends on the lower confidence limits of the isotonic contrasts of
the force means at each temperature, adjusted for multiplicity. The corresponding isotonic contrast compares
the average of a particular group and the preceding groups with the average of the succeeding groups. You
can compute adjusted confidence intervals for isotonic contrasts by using the LSMESTIMATE statement.

The following statements request an analysis of the FerriteCores data as a one-way design and multiplicity-
adjusted lower confidence limits for the isotonic contrasts. For the multiplicity adjustment, the LSMESTI-
MATE statement employs simulation, which provides adjusted p-values and lower confidence limits that are
exact up to Monte Carlo error.

proc glimmix data=FerriteCores;
class Temp;
model MagneticForce = Temp;
lsmestimate Temp

'avg(1:1)<avg(2:4)' -3 1 1 1 divisor=3,
'avg(1:2)<avg(3:4)' -1 -1 1 1 divisor=2,
'avg(1:3)<avg(4:4)' -1 -1 -1 3 divisor=3
/ adjust=simulate(seed=1) cl upper;

ods select LSMestimates;
run;

The results are shown in Output 41.7.1.
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Output 41.7.1 Analysis of LS-Means with Isotonic Contrasts

The GLIMMIX Procedure

Least Squares Means Estimates
Adjustment for Multiplicity: Simulated

Standard
Effect Label Estimate Error DF t Value Tails Pr > t

Temp avg(1:1)<avg(2:4) 0.8000 0.1906 16 4.20 Upper 0.0003
Temp avg(1:2)<avg(3:4) 0.7000 0.1651 16 4.24 Upper 0.0003
Temp avg(1:3)<avg(4:4) 0.4000 0.1906 16 2.10 Upper 0.0260

Least Squares Means Estimates
Adjustment for Multiplicity: Simulated

Effect Label Adj P Alpha Lower Upper

Temp avg(1:1)<avg(2:4) 0.0010 0.05 0.4672 Infty
Temp avg(1:2)<avg(3:4) 0.0009 0.05 0.4118 Infty
Temp avg(1:3)<avg(4:4) 0.0625 0.05 0.06721 Infty

Least Squares Means Estimates
Adjustment for Multiplicity: Simulated

Adj Adj
Effect Label Lower Upper

Temp avg(1:1)<avg(2:4) 0.3771 Infty
Temp avg(1:2)<avg(3:4) 0.3337 Infty
Temp avg(1:3)<avg(4:4) -0.02291 Infty

With an adjusted p-value of 0.001, the magnetic force at the first temperature is significantly less than the
average of the other temperatures. Likewise, the average of the first two temperatures is significantly less
than the average of the last two (p = 0.0009). However, the magnetic force at the last temperature is not
significantly greater than the average magnetic force of the others (p = 0.0625). These results indicate a
significant monotone increase over the first three temperatures, but not across all four temperatures.

Example 41.8: Adjusted Covariance Matrices of Fixed Effects
The following data are from Pothoff and Roy (1964) and consist of growth measurements for 11 girls and
16 boys at ages 8, 10, 12, and 14. Some of the observations are suspect (for example, the third observation
for person 20); however, all of the data are used here for comparison purposes.

data pr;
input child gender$ y1 y2 y3 y4;
array yy y1-y4;
do time=1 to 4;

age = time*2 + 6;
y = yy{time};
output;

end;
drop y1-y4;
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datalines;
1 F 21.0 20.0 21.5 23.0
2 F 21.0 21.5 24.0 25.5
3 F 20.5 24.0 24.5 26.0
4 F 23.5 24.5 25.0 26.5
5 F 21.5 23.0 22.5 23.5
6 F 20.0 21.0 21.0 22.5
7 F 21.5 22.5 23.0 25.0
8 F 23.0 23.0 23.5 24.0
9 F 20.0 21.0 22.0 21.5

10 F 16.5 19.0 19.0 19.5
11 F 24.5 25.0 28.0 28.0
12 M 26.0 25.0 29.0 31.0
13 M 21.5 22.5 23.0 26.5
14 M 23.0 22.5 24.0 27.5
15 M 25.5 27.5 26.5 27.0
16 M 20.0 23.5 22.5 26.0
17 M 24.5 25.5 27.0 28.5
18 M 22.0 22.0 24.5 26.5
19 M 24.0 21.5 24.5 25.5
20 M 23.0 20.5 31.0 26.0
21 M 27.5 28.0 31.0 31.5
22 M 23.0 23.0 23.5 25.0
23 M 21.5 23.5 24.0 28.0
24 M 17.0 24.5 26.0 29.5
25 M 22.5 25.5 25.5 26.0
26 M 23.0 24.5 26.0 30.0
27 M 22.0 21.5 23.5 25.0
;

Jennrich and Schluchter (1986) analyze these data with various models for the fixed effects and the covari-
ance structure. The strategy here is to fit a growth curve model for the boys and girls and to account for
subject-to-subject variation through G-side random effects. In addition, serial correlation among the obser-
vations within each child is accounted for by a time series process. The data are assumed to be Gaussian,
and their –2 restricted log likelihood is minimized to estimate the model parameters.

The following statements fit a mixed model in which a separate growth curve is assumed for each gender:

proc glimmix data=pr;
class child gender time;
model y = gender age gender*age / covb(details) ddfm=kr;
random intercept age / type=chol sub=child;
random time / subject=child type=ar(1) residual;
ods select ModelInfo CovB CovBModelBased CovBDetails;

run;

The growth curve for an individual child differs from the gender-specific trend because of a random intercept
and a random slope. The two G-side random effects are assumed to be correlated. Their unstructured
covariance matrix is parameterized in terms of the Cholesky root to guarantee a positive (semi-)definite
estimate. An AR(1) covariance structure is modeled for the observations over time for each child. Notice
the RESIDUAL option in the second RANDOM statement. It identifies this as an R-side random effect.
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The DDFM=KR option requests that the covariance matrix of the fixed-effect parameter estimates and
denominator degrees of freedom for t and F tests are determined according to Kenward and Roger (1997).
This is reflected in the “Model Information” table (Output 41.8.1).

Output 41.8.1 Model Information with DDFM=KR

The GLIMMIX Procedure

Model Information

Data Set WORK.PR
Response Variable y
Response Distribution Gaussian
Link Function Identity
Variance Function Default
Variance Matrix Blocked By child
Estimation Technique Restricted Maximum Likelihood
Degrees of Freedom Method Kenward-Roger
Fixed Effects SE Adjustment Kenward-Roger

The COVB option in the MODEL statement requests that the covariance matrix used for inference about
fixed effects in this model is displayed; this is the Kenward-Roger-adjusted covariance matrix. The DE-
TAILS suboption requests that the unadjusted covariance matrix is also displayed (Output 41.8.2). In addi-
tion, a table of diagnostic measures for the covariance matrices is produced.

Output 41.8.2 Model-Based and Adjusted Covariance Matrix

Model Based Covariance Matrix for Fixed Effects (Unadjusted)

Effect gender Row Col1 Col2 Col3 Col4 Col5 Col6

Intercept 1 0.9969 -0.9969 -0.07620 0.07620
gender F 2 -0.9969 2.4470 0.07620 -0.1870
gender M 3
age 4 -0.07620 0.07620 0.007581 -0.00758
age*gender F 5 0.07620 -0.1870 -0.00758 0.01861
age*gender M 6

Covariance Matrix for Fixed Effects

Effect gender Row Col1 Col2 Col3 Col4 Col5 Col6

Intercept 1 0.9724 -0.9724 -0.07412 0.07412
gender F 2 -0.9724 2.3868 0.07412 -0.1819
gender M 3
age 4 -0.07412 0.07412 0.007256 -0.00726
age*gender F 5 0.07412 -0.1819 -0.00726 0.01781
age*gender M 6
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Output 41.8.2 continued

Diagnostics for Covariance Matrices of Fixed Effects

Model-
Based Adjusted

Dimensions Rows 6 6
Non-zero entries 16 16

Summaries Trace 3.4701 3.3843
Log determinant -11.95 -12.17

Eigenvalues > 0 4 4
= 0 2 2
max abs 2.972 2.8988
min abs non-zero 0.0009 0.0008
Condition number 3467.8 3698.2

Norms Frobenius 3.0124 2.9382
Infinity 3.7072 3.6153

Comparisons Concordance correlation 0.9979
Discrepancy function 0.0084
Frobenius norm of difference 0.0742
Trace(Adjusted Inv(MBased)) 3.7801

Determinant and inversion results apply to the nonsingular
partitions of the covariance matrices.

The “Diagnostics for Covariance Matrices” table in Output 41.8.2 consists of several sections. The trace
and log determinant of covariance matrices are general scalar summaries that are sometimes used in direct
comparisons, or in formulating further statistics, such as the difference of log determinants. The trace simply
represents the sum of the variances of all fixed-effects parameters.

The two matrices have the same number of positive and zero eigenvalues; hence they are of the same rank.
There are no negative eigenvalues; hence the matrices are positive semi-definite.

The “Comparisons” section of the table provides several statistics that set the matrices in relation-
ship. The statistics enable you to assess the extent to which the adjustment affected the model-
based matrix. If the two matrices are identical, the concordance correlation equals 1, the dis-
crepancy function and the Frobenius norm of the differences equal 0, and the trace of the ad-
justed and the (generalized) inverse of the model-based matrix equals the rank. See the section
“Exploring and Comparing Covariance Matrices” on page 3080 for computational details regarding these
statistics. With increasing discrepancy between the matrices, the difference norm and discrepancy function
increase, the concordance correlation falls below 1, and the trace deviates from the rank. In this particu-
lar example, there is strong agreement between the two matrices; the adjustment to the covariance matrix
associated with DDFM=KR is only slight. It is noteworthy, however, that the trace of the adjusted covari-
ance matrix falls short of the trace of the unadjusted one. Indeed, from Output 41.8.2 you can see that the
diagonal elements of the adjusted covariance matrices are uniformly smaller than those of the model-based
covariance matrix.
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Standard error “shrinkage” for the Kenward-Roger covariance adjustment is due to the term �0:25Rij in
equation (3) of Kenward and Roger (1997), which is nonzero for covariance structures with second deriva-
tives, such as the TYPE=ANTE(1), TYPE=AR(1), TYPE=ARH(1), TYPE=ARMA(1,1), TYPE=CHOL,
TYPE=CSH, TYPE=FA0(q), TYPE=TOEPH, and TYPE=UNR structures and all TYPE=SP() structures.

For covariance structures that are linear in the parameters, Rij D 0. You can add the FIRSTORDER subop-
tion to the DDFM=KR option to request that second derivative matrices Rij are excluded from computing
the covariance matrix adjustment. The resulting covariance adjustment is that of Kackar and Harville (1984)
and Harville and Jeske (1992). This estimator is denoted as em@ in Harville and Jeske (1992) and is referred
to there as the Prasad-Rao estimator after related work by Prasad and Rao (1990). This standard error
adjustment is guaranteed to be positive (semi-)definite. The following statements fit the model with the
Kackar-Harville-Jeske estimator and compare model-based and adjusted covariance matrices:

proc glimmix data=pr;
class child gender time;
model y = gender age gender*age / covb(details)

ddfm=kr(firstorder);
random intercept age / type=chol sub=child;
random time / subject=child type=ar(1) residual;
ods select ModelInfo CovB CovBDetails;

run;

The standard error adjustment is reflected in the “Model Information” table (Output 41.8.3).

Output 41.8.3 Model Information with DDFM=KR(FIRSTORDER)

The GLIMMIX Procedure

Model Information

Data Set WORK.PR
Response Variable y
Response Distribution Gaussian
Link Function Identity
Variance Function Default
Variance Matrix Blocked By child
Estimation Technique Restricted Maximum Likelihood
Degrees of Freedom Method Kenward-Roger
Fixed Effects SE Adjustment Prasad-Rao-Kackar-Harville-Jeske

Output 41.8.4 displays the adjusted covariance matrix. Notice that the elements of this matrix, in particular
the diagonal elements, are larger in absolute value than those of the model-based estimator (Output 41.8.2).
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Output 41.8.4 Adjusted Covariance Matrix and Comparison to Model-Based Estimator

Covariance Matrix for Fixed Effects

Effect gender Row Col1 Col2 Col3 Col4 Col5 Col6

Intercept 1 1.0122 -1.0122 -0.07758 0.07758
gender F 2 -1.0122 2.4845 0.07758 -0.1904
gender M 3
age 4 -0.07758 0.07758 0.007706 -0.00771
age*gender F 5 0.07758 -0.1904 -0.00771 0.01891
age*gender M 6

Diagnostics for Covariance Matrices of Fixed Effects

Model-
Based Adjusted

Dimensions Rows 6 6
Non-zero entries 16 16

Summaries Trace 3.4701 3.5234
Log determinant -11.95 -11.91

Eigenvalues > 0 4 4
= 0 2 2
max abs 2.972 3.0176
min abs non-zero 0.0009 0.0009
Condition number 3467.8 3513.4

Norms Frobenius 3.0124 3.0587
Infinity 3.7072 3.7647

Comparisons Concordance correlation 0.9999
Discrepancy function 0.0003
Frobenius norm of difference 0.0463
Trace(Adjusted Inv(MBased)) 4.0352

Determinant and inversion results apply to the nonsingular
partitions of the covariance matrices.

The “Comparisons” statistics show that the model-based and adjusted covariance matrix of the fixed-effects
parameter estimates are very similar. The concordance correlation is near 1, the discrepancy is near zero,
and the trace is very close to the number of positive eigenvalues. This is due to the balanced nature of these
repeated measures data. Shrinkage of standard errors, however, can not occur with the Kackar-Harville-
Jeske estimator.
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Example 41.9: Testing Equality of Covariance and Correlation Matrices
Fisher’s iris data are widely used in multivariate statistics. They comprise measurements in millimeters of
four flower attributes, the length and width of sepals and petals for 50 specimens from each of three species,
Iris setosa, I. versicolor, and I. virginica (Fisher 1936).

When modeling multiple attributes from the same specimen, correlations among measurements from the
same flower must be taken into account. Unstructured covariance matrices are common in this multivariate
setting. Species comparisons can focus on comparisons of mean response, but comparisons of the variation
and covariation are also of interest. In this example, the equivalence of covariance and correlation matrices
among the species are examined.

The iris data set is available in the Sashelp library. The following step displays the first 10 observations
of the iris data in multivariate format—that is, each observation contains multiple response variables. The
DATA step that follows creates a data set in univariate form, where each observation corresponds to a single
response variable. This is the form needed by the GLIMMIX procedure.

proc print data=Sashelp.iris(obs=10);
run;

Output 41.9.1 Fisher (1936) Iris Data

Sepal Sepal Petal Petal
Obs Species Length Width Length Width

1 Setosa 50 33 14 2
2 Setosa 46 34 14 3
3 Setosa 46 36 10 2
4 Setosa 51 33 17 5
5 Setosa 55 35 13 2
6 Setosa 48 31 16 2
7 Setosa 52 34 14 2
8 Setosa 49 36 14 1
9 Setosa 44 32 13 2
10 Setosa 50 35 16 6

data iris_univ;
set sashelp.iris;
retain id 0;
array y (4) SepalLength SepalWidth PetalLength PetalWidth;
id+1;
do var=1 to 4;

response = y{var};
output;

end;
drop SepalLength SepalWidth PetalLength PetalWidth:;

run;

The following GLIMMIX statements fit a model with separate unstructured covariance matrices for each
species:
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ods select FitStatistics CovParms CovTests;
proc glimmix data=iris_univ;

class species var id;
model response = species*var;
random _residual_ / type=un group=species subject=id;
covtest homogeneity;

run;

The mean function is modeled as a cell-means model that allows for different means for each species and
outcome variable. The covariances are modeled directly (R-side) rather than through random effects. The
ID variable identifies the individual plant, so that responses from different plants are independent. The
GROUP=SPECIES option varies the parameters of the unstructured covariance matrix by species. Hence,
this model has 30 covariance parameters: 10 unique parameters for a .4 � 4/ covariance matrix for each of
three species.

The COVTEST statement requests a test of homogeneity—that is, it tests whether varying the covariance
parameters by the group effect provides a significantly better fit compared to a model in which different
groups share the same parameter.

Output 41.9.2 Fit Statistics for Analysis of Fisher’s Iris Data

The GLIMMIX Procedure

Fit Statistics

-2 Res Log Likelihood 2812.89
AIC (smaller is better) 2872.89
AICC (smaller is better) 2876.23
BIC (smaller is better) 2963.21
CAIC (smaller is better) 2993.21
HQIC (smaller is better) 2909.58
Generalized Chi-Square 588.00
Gener. Chi-Square / DF 1.00

The “Fit Statistics” table shows the –2 restricted (residual) log likelihood in the full model and other fit
statistics (Output 41.9.2). The “-2 Res Log Likelihood” sets the benchmark against which a model with
homogeneity constraint is compared. Output 41.9.3 displays the 30 covariance parameters in this model.

There appear to be substantial differences among the covariance parameters from different groups. For
example, the residual variability of the petal length of the three species is 12.4249, 26.6433, and 40.4343,
respectively. The homogeneity hypothesis restricts these variances to be equal and similarly for the other
covariance parameters. The results from the COVTEST statement are shown in Output 41.9.4.
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Output 41.9.3 Covariance Parameters Varied by Species (TYPE=UN)

Covariance Parameter Estimates

Cov Standard
Parm Subject Group Estimate Error

UN(1,1) id Species Setosa 12.4249 2.5102
UN(2,1) id Species Setosa 9.9216 2.3775
UN(2,2) id Species Setosa 14.3690 2.9030
UN(3,1) id Species Setosa 1.6355 0.9052
UN(3,2) id Species Setosa 1.1698 0.9552
UN(3,3) id Species Setosa 3.0159 0.6093
UN(4,1) id Species Setosa 1.0331 0.5508
UN(4,2) id Species Setosa 0.9298 0.5859
UN(4,3) id Species Setosa 0.6069 0.2755
UN(4,4) id Species Setosa 1.1106 0.2244
UN(1,1) id Species Versicolor 26.6433 5.3828
UN(2,1) id Species Versicolor 8.5184 2.6144
UN(2,2) id Species Versicolor 9.8469 1.9894
UN(3,1) id Species Versicolor 18.2898 4.3398
UN(3,2) id Species Versicolor 8.2653 2.4149
UN(3,3) id Species Versicolor 22.0816 4.4612
UN(4,1) id Species Versicolor 5.5780 1.6617
UN(4,2) id Species Versicolor 4.1204 1.0641
UN(4,3) id Species Versicolor 7.3102 1.6891
UN(4,4) id Species Versicolor 3.9106 0.7901
UN(1,1) id Species Virginica 40.4343 8.1690
UN(2,1) id Species Virginica 9.3763 3.2213
UN(2,2) id Species Virginica 10.4004 2.1012
UN(3,1) id Species Virginica 30.3290 6.6262
UN(3,2) id Species Virginica 7.1380 2.7395
UN(3,3) id Species Virginica 30.4588 6.1536
UN(4,1) id Species Virginica 4.9094 2.5916
UN(4,2) id Species Virginica 4.7629 1.4367
UN(4,3) id Species Virginica 4.8824 2.2750
UN(4,4) id Species Virginica 7.5433 1.5240

Output 41.9.4 Likelihood Ratio Test of Homogeneity

Tests of Covariance Parameters
Based on the Restricted Likelihood

Label DF -2 Res Log Like ChiSq Pr > ChiSq Note

Homogeneity 20 2959.55 146.66 <.0001 DF

DF: P-value based on a chi-square with DF degrees of freedom.
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Denote as Rk the covariance matrix for species k D 1; 2; 3with elements �ijk . In processing the COVTEST
hypothesis H0WR1 D R2 D R3, the GLIMMIX procedure fits a model that satisfies the constraints

�111 D �112 D �113

�211 D �212 D �213

�231 D �232 D �233

:::

�441 D �442 D �443

where �ijk is the covariance between the ith and jth variable for the kth species. The –2 restricted log
likelihood of this restricted model is 2959.55 (Output 41.9.4). The change of 146.66 compared to the full
model is highly significant. There is sufficient evidence to reject the notion of equal covariance matrices
among the three iris species.

Equality of covariance matrices implies equality of correlation matrices, but the reverse is not true. Fewer
constraints are needed to equate correlations because the diagonal entries of the covariance matrices are free
to vary. In order to test the equality of the correlation matrices among the three species, you can parameterize
the unstructured covariance matrix in terms of the correlations and use a COVTEST statement with general
contrasts, as shown in the following statements:

ods select FitStatistics CovParms CovTests;
proc glimmix data=iris_univ;

class species var id;
model response = species*var;
random _residual_ / type=unr group=species subject=id;
covtest 'Equal Covariance Matrices' homogeneity;
covtest 'Equal Correlation Matrices' general

0 0 0 0 1 0 0 0 0 0
0 0 0 0 -1 0 0 0 0 0,
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0 0 0,
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 -1 0 0 0 0,
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -1 0 0 0 0,
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 -1 0 0 0,
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -1 0 0 0,
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 -1 0 0,
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 -1 0 0,
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 -1 0,
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 -1 0,
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 -1,
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 / estimates;

run;

The TYPE=UNR structure is a reparameterization of TYPE=UN. The models provide the same fit, as seen
by comparison of the “Fit Statistics” tables in Output 41.9.2 and Output 41.9.5. The covariance parame-
ters are ordered differently, however. In each group, the four variances precede the six correlations (Out-
put 41.9.5). The first COVTEST statement tests the homogeneity hypothesis in terms of the UNR parame-
terization, and the result is identical to the test in Output 41.9.4. The second COVTEST statement restricts
the correlations to be equal across groups. If �ijk is the correlation between the ith and jth variable for the
kth species, the 12 restrictions are

�211 D �212 D �213

�311 D �312 D �313

�321 D �322 D �323

�411 D �412 D �413

�421 D �422 D �423

�431 D �432 D �433

The ESTIMATES option in the COVTEST statement requests that the GLIMMIX procedure display the
covariance parameter estimates in the restricted model (Output 41.9.5).

Output 41.9.5 Fit Statistics, Covariance Parameters (TYPE=UNR), and Likelihood Ratio Tests for Equality
of Covariance and Correlation Matrices

The GLIMMIX Procedure

Fit Statistics

-2 Res Log Likelihood 2812.89
AIC (smaller is better) 2872.89
AICC (smaller is better) 2876.23
BIC (smaller is better) 2963.21
CAIC (smaller is better) 2993.21
HQIC (smaller is better) 2909.58
Generalized Chi-Square 588.00
Gener. Chi-Square / DF 1.00
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Output 41.9.5 continued

Covariance Parameter Estimates

Standard
Cov Parm Subject Group Estimate Error

Var(1) id Species Setosa 12.4249 2.5102
Var(2) id Species Setosa 14.3690 2.9030
Var(3) id Species Setosa 3.0159 0.6093
Var(4) id Species Setosa 1.1106 0.2244
Corr(2,1) id Species Setosa 0.7425 0.06409
Corr(3,1) id Species Setosa 0.2672 0.1327
Corr(3,2) id Species Setosa 0.1777 0.1383
Corr(4,1) id Species Setosa 0.2781 0.1318
Corr(4,2) id Species Setosa 0.2328 0.1351
Corr(4,3) id Species Setosa 0.3316 0.1271
Var(1) id Species Versicolor 26.6433 5.3828
Var(2) id Species Versicolor 9.8469 1.9894
Var(3) id Species Versicolor 22.0816 4.4612
Var(4) id Species Versicolor 3.9106 0.7901
Corr(2,1) id Species Versicolor 0.5259 0.1033
Corr(3,1) id Species Versicolor 0.7540 0.06163
Corr(3,2) id Species Versicolor 0.5605 0.09797
Corr(4,1) id Species Versicolor 0.5465 0.1002
Corr(4,2) id Species Versicolor 0.6640 0.07987
Corr(4,3) id Species Versicolor 0.7867 0.05445
Var(1) id Species Virginica 40.4343 8.1690
Var(2) id Species Virginica 10.4004 2.1012
Var(3) id Species Virginica 30.4588 6.1536
Var(4) id Species Virginica 7.5433 1.5240
Corr(2,1) id Species Virginica 0.4572 0.1130
Corr(3,1) id Species Virginica 0.8642 0.03616
Corr(3,2) id Species Virginica 0.4010 0.1199
Corr(4,1) id Species Virginica 0.2811 0.1316
Corr(4,2) id Species Virginica 0.5377 0.1015
Corr(4,3) id Species Virginica 0.3221 0.1280
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Output 41.9.5 continued

Tests of Covariance Parameters
Based on the Restricted Likelihood

----
Estimate
s H0---

Label DF -2 Res Log Like ChiSq Pr > ChiSq Est1

Equal Covariance Matrices 20 2959.55 146.66 <.0001 26.5004
Equal Correlation Matrices 12 2876.38 63.49 <.0001 16.4715

Tests of Covariance Parameters
Based on the Restricted Likelihood

------------------Estimates H0------------------
Label Est2 Est3 Est4 Est5 Est6

Equal Covariance Matrices 11.5395 18.5179 4.1883 0.5302 0.7562
Equal Correlation Matrices 14.8656 4.8427 1.4392 0.5612 0.6827

Tests of Covariance Parameters
Based on the Restricted Likelihood

------------------Estimates H0------------------
Label Est7 Est8 Est9 Est10 Est11

Equal Covariance Matrices 0.3779 0.3645 0.4705 0.4845 26.5004
Equal Correlation Matrices 0.4016 0.3844 0.4976 0.5219 24.4020

Tests of Covariance Parameters
Based on the Restricted Likelihood

------------------Estimates H0------------------
Label Est12 Est13 Est14 Est15 Est16

Equal Covariance Matrices 11.5395 18.5179 4.1883 0.5302 0.7562
Equal Correlation Matrices 9.1566 17.4434 3.0021 0.5612 0.6827

Tests of Covariance Parameters
Based on the Restricted Likelihood

------------------Estimates H0------------------
Label Est17 Est18 Est19 Est20 Est21

Equal Covariance Matrices 0.3779 0.3645 0.4705 0.4845 26.5004
Equal Correlation Matrices 0.4016 0.3844 0.4976 0.5219 35.0544



Example 41.10: Multiple Trends Correspond to Multiple Extrema in Profile Likelihoods F 3205

Output 41.9.5 continued

Tests of Covariance Parameters
Based on the Restricted Likelihood

------------------Estimates H0------------------
Label Est22 Est23 Est24 Est25 Est26

Equal Covariance Matrices 11.5395 18.5179 4.1883 0.5302 0.7562
Equal Correlation Matrices 10.8350 27.3593 8.1395 0.5612 0.6827

Tests of Covariance Parameters
Based on the Restricted Likelihood

--------------Estimates H0---------------
Label Est27 Est28 Est29 Est30 Note

Equal Covariance Matrices 0.3779 0.3645 0.4705 0.4845 DF
Equal Correlation Matrices 0.4016 0.3844 0.4976 0.5219 DF

DF: P-value based on a chi-square with DF degrees of freedom.

The result of the homogeneity test is identical to that in Output 41.9.4. The hypothesis of equality of the
correlation matrices is also rejected with a chi-square value of 63.49 and a p-value of < 0:0001. Notice,
however, that the chi-square statistic is smaller than in the test of homogeneity due to the smaller number
of restrictions imposed on the full model. The estimate of the common correlation matrix in the restricted
model is2664

1 0:561 0:683 0:384

0:561 1 0:402 0:498

0:683 0:402 1 0:522

0:384 0:498 0:522 1

3775

Example 41.10: Multiple Trends Correspond to Multiple Extrema in Profile
Likelihoods

Observations for a period of 168 months for the “Southern Oscillation Index,” measurements of monthly
averaged atmospheric pressure differences between Easter Island and Darwin, Australia (Kahaner, Moler,
and Nash 1989, Ch. 11.9; National Institute of Standards and Technology 1998) is available in the data
set ENSO in the Sashelp library. These data are also used as an example in Chapter 53, “The LOESS
Procedure.” The following statements print the first 10 observations of this data set in Output 41.10.1.

proc print data=Sashelp.enso(obs=10);
run;
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Output 41.10.1 El Niño Southern Oscillation Data

Obs Month Year Pressure

1 1 0.08333 12.9
2 2 0.16667 11.3
3 3 0.25000 10.6
4 4 0.33333 11.2
5 5 0.41667 10.9
6 6 0.50000 7.5
7 7 0.58333 7.7
8 8 0.66667 11.7
9 9 0.75000 12.9

10 10 0.83333 14.3

Differences in atmospheric pressure create wind, and the differences recorded in the data set ENSO drive
the trade winds in the southern hemisphere. Such time series often do not consist of a single trend or cycle.
In this particular case, there are at least two known cycles that reflect the annual weather pattern and a longer
cycle that represents the periodic warming of the Pacific Ocean (El Niño).

To estimate the trend in these data by using mixed model technology, you can apply a mixed model
smoothing technique such as TYPE=RSMOOTH or TYPE=PSPLINE. The following statements fit a ra-
dial smoother to the ENSO data and obtain profile likelihoods for a series of values for the variance of the
random spline coefficients:

data tdata;
do covp1=0,0.0005,0.05,0.1,0.2,0.5,

1,2,3,4,5,6,8,10,15,20,50,
75,100,125,140,150,160,175,
200,225,250,275,300,350;

output;
end;

run;

ods select FitStatistics CovParms CovTests;
proc glimmix data=sashelp.enso noprofile;

model pressure = year;
random year / type=rsmooth knotmethod=equal(50);
parms (2) (10);
covtest tdata=tdata / parms;
ods output covtests=ct;

run;

The tdata data set contains value for the variance of the radial smoother variance for which the profile
likelihood of the model is to be computed. The profile likelihood is obtained by setting the radial smoother
variance at the specified value and estimating all other parameters subject to that constraint.
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Because the model contains a residual variance and you need to specify nonzero values for the first covari-
ance parameter, the NOPROFILE is added to the PROC GLIMMIX statements. If the residual variance is
profiled from the estimation, you cannot fix covariance parameters at a given value, because they would be
reexpressed during model fitting in terms of ratios with the profiled (and changing) variance.

The PARMS statement determines starting values for the covariance parameters for fitting the (full) model.
The PARMS option in the COVTEST statement requests that the input parameters be added to the output
and the output data set. This is useful for subsequent plotting of the profile likelihood function.

The “Fit Statistics” table displays the –2 restricted log likelihood of the model (897.76, Output 41.10.2).
The estimate of the variance of the radial smoother coefficients is 3.5719.

The “Test of Covariance Parameters” table displays the –2 restricted log likelihood for each observation in
the tdata set. Because the tdata data set specifies values for only the first covariance parameter, the second
covariance parameter is free to vary and the values for –2 Res Log Like are profile likelihoods. Notice that
for a number of values of CovP1 the chi-square statistic is missing in this table. For these values the –2 Res
Log Like is smaller than that of the full model. The model did not converge to a global minimum of the
negative restricted log likelihood.

Output 41.10.2 REML and Profile Likelihood Analysis

The GLIMMIX Procedure

Fit Statistics

-2 Res Log Likelihood 897.76
AIC (smaller is better) 901.76
AICC (smaller is better) 901.83
BIC (smaller is better) 897.76
CAIC (smaller is better) 899.76
HQIC (smaller is better) 897.76
Generalized Chi-Square 1554.38
Gener. Chi-Square / DF 9.36
Radial Smoother df(res) 153.52

Covariance Parameter Estimates

Standard
Cov Parm Estimate Error

Var[RSmooth(Year)] 3.5719 3.7672
Residual 9.3638 1.3014
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Output 41.10.2 continued

Tests of Covariance Parameters
Based on the Restricted Likelihood

-Input Parameters-
Label DF -2 Res Log Like ChiSq Pr > ChiSq CovP1 CovP2

WORK.TDATA 1 893.01 . 1.0000 0 9.3638
WORK.TDATA 1 892.76 . 1.0000 0.000500 9.3638
WORK.TDATA 1 897.34 . 1.0000 0.05000 9.3638
WORK.TDATA 1 898.53 0.77 0.3816 0.1000 9.3638
WORK.TDATA 1 899.38 1.62 0.2038 0.2000 9.3638
WORK.TDATA 1 899.49 1.73 0.1888 0.5000 9.3638
WORK.TDATA 1 898.83 1.07 0.3016 1.0000 9.3638
WORK.TDATA 1 898.04 0.28 0.5967 2.0000 9.3638
WORK.TDATA 1 897.79 0.03 0.8693 3.0000 9.3638
WORK.TDATA 1 897.77 0.01 0.9145 4.0000 9.3638
WORK.TDATA 1 897.86 0.10 0.7517 5.0000 9.3638
WORK.TDATA 1 897.99 0.23 0.6311 6.0000 9.3638
WORK.TDATA 1 898.27 0.51 0.4761 8.0000 9.3638
WORK.TDATA 1 898.49 0.73 0.3919 10.0000 9.3638
WORK.TDATA 1 898.70 0.94 0.3318 15.0000 9.3638
WORK.TDATA 1 898.45 0.69 0.4068 20.0000 9.3638
WORK.TDATA 1 892.63 . 1.0000 50.0000 9.3638
WORK.TDATA 1 887.44 . 1.0000 75.0000 9.3638
WORK.TDATA 1 883.79 . 1.0000 100.00 9.3638
WORK.TDATA 1 881.55 . 1.0000 125.00 9.3638
WORK.TDATA 1 880.72 . 1.0000 140.00 9.3638
WORK.TDATA 1 . . . 150.00 9.3638
WORK.TDATA 1 880.07 . 1.0000 160.00 9.3638
WORK.TDATA 1 879.85 . 1.0000 175.00 9.3638
WORK.TDATA 1 . . . 200.00 9.3638
WORK.TDATA 1 880.21 . 1.0000 225.00 9.3638
WORK.TDATA 1 880.80 . 1.0000 250.00 9.3638
WORK.TDATA 1 881.56 . 1.0000 275.00 9.3638
WORK.TDATA 1 882.44 . 1.0000 300.00 9.3638
WORK.TDATA 1 884.41 . 1.0000 350.00 9.3638

Tests of
Covariance
Parameters

Based on the
Restricted
Likelihood

Label Note

WORK.TDATA MI
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
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Output 41.10.2 continued

Tests of
Covariance
Parameters

Based on the
Restricted
Likelihood

Label Note

WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF
WORK.TDATA DF

DF: P-value based on a chi-square with DF degrees of freedom.
MI: P-value based on a mixture of chi-squares.

The following statements plot the –2 restricted profile log likelihood (Output 41.10.3):

proc sgplot data=ct;
series y=objective x=covp1;

run;
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Output 41.10.3 –2 Restricted Profile Log Likelihood for Smoothing Variance

The local minimum at which the optimization stopped is clearly visible, as are a second local minimum near
zero and the global minimum near 180.

The observed and predicted pressure differences that correspond to the three minima are shown in Out-
put 41.10.4. These results were produced with the following statements:

proc glimmix data=sashelp.enso;
model pressure = year;
random year / type=rsmooth knotmethod=equal(50);
parms (0) (10);
output out=gmxout1 pred=pred1;

run;
proc glimmix data=sashelp.enso;

model pressure = year;
random year / type=rsmooth knotmethod=equal(50);
output out=gmxout2 pred=pred2;
parms (2) (10);

run;
proc glimmix data=sashelp.enso;

model pressure = year;
random year / type=rsmooth knotmethod=equal(50);
output out=gmxout3 pred=pred3;
parms (200) (10);

run;
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data plotthis; merge gmxout1 gmxout2 gmxout3;
run;
proc sgplot data=plotthis;

scatter x=year y=Pressure;
series x=year y=pred1 /

lineattrs = (pattern=solid thickness=2)
legendlabel = "Var[RSmooth] = 0.0005"
name = "pred1";

series x=year y=pred2 /
lineattrs = (pattern=dot thickness=2)
legendlabel = "Var[RSmooth] = 3.5719"
name = "pred2";

series x=year y=pred3 /
lineattrs = (pattern=dash thickness=2)
legendlabel = "Var[RSmooth] = 186.71"
name = "pred3";

keylegend "pred1" "pred2" "pred3" / across=2;
run;

Output 41.10.4 Observed and Predicted Pressure Differences
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The one-year cycle (b�2r D 186:71) and the El Niño cycle (b�2r D 3:5719) are clearly visible. Notice that a
larger smoother variance results in larger BLUPs and hence larger adjustments to the fixed-effects model. A
large smoother variance thus results in a more wiggly fit. The third local minimum atb�2r D 0:0005 applies
only very small adjustments to the linear regression between pressure and time, creating slight curvature.

Example 41.11: Maximum Likelihood in Proportional Odds Model with
Random Effects

The data for this example are taken from Gilmour, Anderson, and Rae (1987) and concern the foot shape of
2,513 lambs that represent 34 sires. The foot shape of the animals was scored in three ordered categories.
The following DATA step lists the data in multivariate form, where each observation corresponds to a sire
and contains the outcomes for the three response categories in the variables k1, k2, and k3. For example,
for the first sire the first foot shape category was observed for 52 of its offspring, foot shape category 2 was
observed for 25 lambs, and none of its offspring was rated in foot shape category 3. The variables yr, b1,
b2, and b3 represent contrasts of fixed effects.

data foot_mv;
input yr b1 b2 b3 k1 k2 k3;
sire = _n_;
datalines;
1 1 0 0 52 25 0
1 1 0 0 49 17 1
1 1 0 0 50 13 1
1 1 0 0 42 9 0
1 1 0 0 74 15 0
1 1 0 0 54 8 0
1 1 0 0 96 12 0
1 -1 1 0 57 52 9
1 -1 1 0 55 27 5
1 -1 1 0 70 36 4
1 -1 1 0 70 37 3
1 -1 1 0 82 21 1
1 -1 1 0 75 19 0
1 -1 -1 0 17 12 10
1 -1 -1 0 13 23 3
1 -1 -1 0 21 17 3

-1 0 0 1 37 41 23
-1 0 0 1 47 24 12
-1 0 0 1 46 25 9
-1 0 0 1 79 32 11
-1 0 0 1 50 23 5
-1 0 0 1 63 18 8
-1 0 0 -1 30 20 9
-1 0 0 -1 31 33 3
-1 0 0 -1 28 18 4
-1 0 0 -1 42 27 4
-1 0 0 -1 35 22 2
-1 0 0 -1 33 18 3
-1 0 0 -1 35 17 4
-1 0 0 -1 26 13 2
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-1 0 0 -1 37 15 2
-1 0 0 -1 36 14 1
-1 0 0 -1 63 20 3
-1 0 0 -1 41 8 1

;

In order to analyze these data as multinomial data with PROC GLIMMIX, the data need to be arranged in
univariate form. The following DATA step creates three observations from each record in data set foot_mv
and stores the category counts in the variable count:

data footshape; set foot_mv;
array k{3};
do Shape = 1 to 3;

count = k{Shape};
output;

end;
drop k:;

run;

Because the sires were selected at random, a model for the three-category response with fixed regression
effects for yr, b1–b3, and with random sire effects is considered. Because the response categories are
ordered, a proportional odds model is chosen (McCullagh 1980). Gilmour, Anderson, and Rae (1987)
consider various analyses for these data. The following GLIMMIX statements fit a model with probit link
for the cumulative probabilities by maximum likelihood where the marginal log likelihood is approximated
by adaptive quadrature:

proc glimmix data=footshape method=quad;
class sire;
model Shape = yr b1 b2 b3 / s link=cumprobit dist=multinomial;
random int / sub=sire s cl;
ods output Solutionr=solr;
freq count;

run;

The number of observations that share a particular response and covariate pattern (variable count) is used
in the FREQ statement. The S and CL options request solutions for the sire effects. These are output to the
data set solr for plotting.

The “Model Information” table shows that the parameters are estimated by maximum likelihood and that
the marginal likelihood is approximated by Gauss-Hermite quadrature (Output 41.11.1).
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Output 41.11.1 Model and Data Information

The GLIMMIX Procedure

Model Information

Data Set WORK.FOOTSHAPE
Response Variable Shape
Response Distribution Multinomial (ordered)
Link Function Cumulative Probit
Variance Function Default
Frequency Variable count
Variance Matrix Blocked By sire
Estimation Technique Maximum Likelihood
Likelihood Approximation Gauss-Hermite Quadrature
Degrees of Freedom Method Containment

Number of Observations Read 102
Number of Observations Used 96
Sum of Frequencies Read 2513
Sum of Frequencies Used 2513

Response Profile

Ordered Total
Value Shape Frequency

1 1 1636
2 2 731
3 3 146

The GLIMMIX procedure is modeling the probabilities of levels of
Shape having lower Ordered Values in the Response Profile table.

The distribution of the data is multinomial with ordered categories. The ordering is implied by the choice
of a link function for the cumulative probabilities. Because a frequency variable is specified, the number of
observations as well as the number of frequencies is displayed. Observations with zero frequency—that is,
foot shape categories that were not observed for a particular sire are not used in the analysis. The “Response
Profile Table” shows the ordering of the response variable and gives a breakdown of the frequencies by
category.

Output 41.11.2 Information about the Size of the Optimization Problem

Dimensions

G-side Cov. Parameters 1
Columns in X 6
Columns in Z per Subject 1
Subjects (Blocks in V) 34
Max Obs per Subject 3
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Output 41.11.2 continued

Optimization Information

Optimization Technique Dual Quasi-Newton
Parameters in Optimization 7
Lower Boundaries 1
Upper Boundaries 0
Fixed Effects Not Profiled
Starting From GLM estimates
Quadrature Points 1

With METHOD=QUAD, the “Dimensions” and “Optimization Information” tables are particularly impor-
tant, because for this estimation methods both fixed effects and covariance parameters participate in the
optimization (Output 41.11.2). For GLM models the optimization involves the fixed effects and possibly
a single scale parameter. For mixed models the fixed effects are typically profiled from the optimization.
Laplace and quadrature estimations are exceptions to these rules. Consequently, there are seven parameters
in this optimization, corresponding to six fixed effects and one variance component. The variance compo-
nent has a lower bound of 0. Also, because the fixed effects are part of the optimizations, PROC GLIMMIX
initially performs a few GLM iterations to obtain starting values for the fixed effects. You can control the
number of initial iterations with the INITITER= option in the PROC GLIMMIX statement.

The last entry in the “Optimization Information” table shows that—at the starting values—PROC GLIM-
MIX determined that a single quadrature point is sufficient to approximate the marginal log likelihood with
the required accuracy. This approximation is thus identical to the Laplace method that is available with
METHOD=LAPLACE.

For METHOD=LAPLACE and METHOD=QUAD, the GLIMMIX procedure produces fit statistics based
on the conditional and marginal distribution (Output 41.11.3). Within the limits of the numeric likelihood
approximation, the information criteria shown in the “Fit Statistics” table can be used to compare models,
and the –2 log likelihood can be used to compare among nested models (nested with respect to fixed effects
and/or the covariance parameters).

Output 41.11.3 Marginal and Conditional Fit Statistics

Fit Statistics

-2 Log Likelihood 3870.12
AIC (smaller is better) 3884.12
AICC (smaller is better) 3884.17
BIC (smaller is better) 3894.81
CAIC (smaller is better) 3901.81
HQIC (smaller is better) 3887.76

Fit Statistics for Conditional
Distribution

-2 log L(Shape | r. effects) 3807.62
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The variance of the sire effect is estimated as 0.04849 with estimated asymptotic standard error of 0.01673
(Output 41.11.4). Based on the magnitude of the estimate relative to the standard error, one might con-
clude that there is significant sire-to-sire variability. Because parameter estimation is based on maximum
likelihood, a formal test of the hypothesis of no sire variability is possible. The category cutoffs for the
cumulative probabilities are 0.3781 and 1.6435. Except for b3, all fixed effects contrasts are significant.

Output 41.11.4 Parameter Estimates

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

Intercept sire 0.04849 0.01673

Solutions for Fixed Effects

Standard
Effect Shape Estimate Error DF t Value Pr > |t|

Intercept 1 0.3781 0.04907 29 7.71 <.0001
Intercept 2 1.6435 0.05930 29 27.72 <.0001
yr 0.1422 0.04834 2478 2.94 0.0033
b1 0.3781 0.07154 2478 5.28 <.0001
b2 0.3157 0.09709 2478 3.25 0.0012
b3 -0.09887 0.06508 2478 -1.52 0.1289

A likelihood ratio test for the sire variability can be carried out by adding a COVTEST statement to the
PROC GLIMMIX statements (Output 41.11.5):

ods select FitStatistics CovParms Covtests;
proc glimmix data=footshape method=quad;

class sire;
model Shape = yr b1 b2 b3 / link=cumprobit dist=multinomial;
random int / sub=sire;
covtest GLM;
freq count;

run;

The statement

covtest GLM;

compares the fitted model to a generalized linear model for independent data by removing the sire variance
component from the model. Equivalently, you can specify

covtest 0;

which compares the fitted model against one where the sire variance is fixed at zero.
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Output 41.11.5 Likelihood Ratio Test for Sire Variance

The GLIMMIX Procedure

Fit Statistics

-2 Log Likelihood 3870.12
AIC (smaller is better) 3884.12
AICC (smaller is better) 3884.17
BIC (smaller is better) 3894.81
CAIC (smaller is better) 3901.81
HQIC (smaller is better) 3887.76

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

Intercept sire 0.04849 0.01673

Tests of Covariance Parameters
Based on the Likelihood

Label DF -2 Log Like ChiSq Pr > ChiSq Note

Independence 1 3915.29 45.17 <.0001 MI

MI: P-value based on a mixture of chi-squares.

The –2 Log Likelihood in the reduced model without the sire effect is 3915.29. Compared to the corre-
sponding marginal fit statistic in the full model (3870.12), this results in a chi-square statistic of 45.17.
Because the variance component for the sire effect has a natural lower bound of zero, PROC GLIMMIX
performs the likelihood ratio test as a one-sided test. As indicated by the note, the p-value for this test is
computed from a mixture of chi-square distributions, applying the results of Self and Liang (1987). There
is significant evidence that the model without sire random effects does not fit the data as well.

In studies of heritability, one is often interested to rank individuals according to some measure of “breed-
ing value.” The following statements display the empirical Bayes estimates of the sire effects from ML
estimation by quadrature along with prediction standard error bars (Output 41.11.6):

proc sort data=solr;
by Estimate;

run;
data solr; set solr;

length sire $2;
obs = _n_;
sire = left(substr(Subject,6,2));

run;
proc sgplot data=solr;

scatter x=obs y=estimate /
markerchar = sire
yerrorupper = upper
yerrorlower = lower;
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xaxis grid label='Sire Rank' values=(1 5 10 15 20 25 30);
yaxis grid label='Predicted Sire Effect';

run;

Output 41.11.6 Ranked Predicted Sire Effects and Prediction Standard Errors

Example 41.12: Fitting a Marginal (GEE-Type) Model
A marginal GEE-type model for clustered data is a model for correlated data that is specified through a
mean function, a variance function, and a “working” covariance structure. Because the assumed covariance
structure can be wrong, the covariance matrix of the parameter estimates is not based on the model alone.
Rather, one of the empirical (“sandwich”) estimators is used to make inferences robust against the choice
of working covariance structure. PROC GLIMMIX can fit marginal models by using R-side random effects
and drawing on the distributional specification in the MODEL statement to derive the link and variance
functions. The EMPIRICAL= option in the PROC GLIMMIX statement enables you to choose one of a
number of empirical covariance estimators.

The data for this example are from Thall and Vail (1990) and reflect the number of seizures of patients
suffering from epileptic episodes. After an eight-week period without treatment, patients were observed
four times in two-week intervals during which they received a placebo or the drug Progabide in addition to
other therapy. These data are also analyzed in Example 40.7 of Chapter 40, “The GENMOD Procedure.”
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The following DATA step creates the data set seizures. The variable id identifies the subjects in the study,
and the variable trt identifies whether a subject received the placebo (trt = 0) or the drug Progabide (trt = 1).
The variable x1 takes on value 0 for the baseline measurement and 1 otherwise.

data seizures;
array c{5};
input id trt c1-c5;
do i=1 to 5;

x1 = (i > 1);
ltime = (i=1)*log(8) + (i ne 1)*log(2);
cnt = c{i};
output;

end;
keep id cnt x1 trt ltime;
datalines;

101 1 76 11 14 9 8
102 1 38 8 7 9 4
103 1 19 0 4 3 0
104 0 11 5 3 3 3
106 0 11 3 5 3 3
107 0 6 2 4 0 5
108 1 10 3 6 1 3
110 1 19 2 6 7 4
111 1 24 4 3 1 3
112 1 31 22 17 19 16
113 1 14 5 4 7 4
114 0 8 4 4 1 4
116 0 66 7 18 9 21
117 1 11 2 4 0 4
118 0 27 5 2 8 7
121 1 67 3 7 7 7
122 1 41 4 18 2 5
123 0 12 6 4 0 2
124 1 7 2 1 1 0
126 0 52 40 20 23 12
128 1 22 0 2 4 0
129 1 13 5 4 0 3
130 0 23 5 6 6 5
135 0 10 14 13 6 0
137 1 46 11 14 25 15
139 1 36 10 5 3 8
141 0 52 26 12 6 22
143 1 38 19 7 6 7
145 0 33 12 6 8 4
147 1 7 1 1 2 3
201 0 18 4 4 6 2
202 0 42 7 9 12 14
203 1 36 6 10 8 8
204 1 11 2 1 0 0
205 0 87 16 24 10 9
206 0 50 11 0 0 5
208 1 22 4 3 2 4
209 1 41 8 6 5 7
210 0 18 0 0 3 3
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211 1 32 1 3 1 5
213 0 111 37 29 28 29
214 1 56 18 11 28 13
215 0 18 3 5 2 5
217 0 20 3 0 6 7
218 1 24 6 3 4 0
219 0 12 3 4 3 4
220 0 9 3 4 3 4
221 1 16 3 5 4 3
222 0 17 2 3 3 5
225 1 22 1 23 19 8
226 0 28 8 12 2 8
227 0 55 18 24 76 25
228 1 25 2 3 0 1
230 0 9 2 1 2 1
232 1 13 0 0 0 0
234 0 10 3 1 4 2
236 1 12 1 4 3 2
238 0 47 13 15 13 12
;

The model fit initially with the following PROC GLIMMIX statements is a Poisson generalized linear model
with effects for an intercept, the baseline measurement, the treatment, and their interaction:

proc glimmix data=seizures;
model cnt = x1 trt x1*trt / dist=poisson offset=ltime

ddfm=none s;
run;

The DDFM=NONE option is chosen in the MODEL statement to produce chi-square and z tests instead of
F and t tests.

Because the initial pretreatment time period is four times as long as the subsequent measurement intervals,
an offset variable is used to standardize the counts. If Yij denotes the number of seizures of subject i in time
interval j of length tj , then Yij =tj is the number of seizures per time unit. Modeling the average number
per time unit with a log link leads to logfEŒYij =tj �g D x0ˇ or logfEŒYij �g D x0ˇ C logftj g. The logarithm
of time (variable ltime) thus serves as an offset. Suppose that ˇ0 denotes the intercept, ˇ1 the effect of
x1, and ˇ2 the effect of trt. Then expfˇ0g is the expected number of seizures per week in the placebo
group at baseline. The corresponding numbers in the treatment group are expfˇ0 C ˇ2g at baseline and
expfˇ0 C ˇ1 C ˇ2g for postbaseline visits.

The “Model Information” table shows that the parameters in this Poisson model are estimated by maximum
likelihood (Output 41.12.1). In addition to the default link and variance function, the variable ltime is used
as an offset.
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Output 41.12.1 Model Information in Poisson GLM

The GLIMMIX Procedure

Model Information

Data Set WORK.SEIZURES
Response Variable cnt
Response Distribution Poisson
Link Function Log
Variance Function Default
Offset Variable ltime
Variance Matrix Diagonal
Estimation Technique Maximum Likelihood
Degrees of Freedom Method None

Fit statistics and parameter estimates are shown in Output 41.12.2.

Output 41.12.2 Results from Fitting Poisson GLM

Fit Statistics

-2 Log Likelihood 3442.66
AIC (smaller is better) 3450.66
AICC (smaller is better) 3450.80
BIC (smaller is better) 3465.34
CAIC (smaller is better) 3469.34
HQIC (smaller is better) 3456.54
Pearson Chi-Square 3015.16
Pearson Chi-Square / DF 10.54

Parameter Estimates

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 1.3476 0.03406 Infty 39.57 <.0001
x1 0.1108 0.04689 Infty 2.36 0.0181
trt -0.1080 0.04865 Infty -2.22 0.0264
x1*trt -0.3016 0.06975 Infty -4.32 <.0001

Because this is a generalized linear model, the large value for the ratio of the Pearson chi-square statistic
and its degrees of freedom is indicative of a model shortcoming. The data are considerably more dispersed
than is expected under a Poisson model. There could be many reasons for this overdispersion—for exam-
ple, a misspecified mean model, data that might not be Poisson distributed, an incorrect variance function,
and correlations among the observations. Because these data are repeated measurements, the presence of
correlations among the observations from the same subject is a likely contributor to the overdispersion.

The following PROC GLIMMIX statements fit a marginal model with correlations. The model is a marginal
one, because no G-side random effects are specified on which the distribution could be conditioned. The
choice of the id variable as the SUBJECT effect indicates that observations from different IDs are uncorre-



3222 F Chapter 41: The GLIMMIX Procedure

lated. Observations from the same ID are assumed to follow a compound symmetry (equicorrelation) model.
The EMPIRICAL option in the PROC GLIMMIX statement requests the classical sandwich estimator as
the covariance estimator for the fixed effects:

proc glimmix data=seizures empirical;
class id;
model cnt = x1 trt x1*trt / dist=poisson offset=ltime

ddfm=none covb s;
random _residual_ / subject=id type=cs vcorr;

run;

The “Model Information” table shows that the parameters are now estimated by residual pseudo-likelihood
(compare Output 41.12.3 and Output 41.12.1). And in this fact lies the main difference between fitting
marginal models with PROC GLIMMIX and with GEE methods as per Liang and Zeger (1986), where
parameters of the working correlation matrix are estimated by the method of moments.

Output 41.12.3 Model Information in Marginal Model

The GLIMMIX Procedure

Model Information

Data Set WORK.SEIZURES
Response Variable cnt
Response Distribution Poisson
Link Function Log
Variance Function Default
Offset Variable ltime
Variance Matrix Blocked By id
Estimation Technique Residual PL
Degrees of Freedom Method None
Fixed Effects SE Adjustment Sandwich - Classical

According to the compound symmetry model, there is substantial correlation among the observations from
the same subject (Output 41.12.4).

Output 41.12.4 Covariance Parameter Estimates and Correlation Matrix

Estimated V Correlation Matrix for id 101

Row Col1 Col2 Col3 Col4 Col5

1 1.0000 0.6055 0.6055 0.6055 0.6055
2 0.6055 1.0000 0.6055 0.6055 0.6055
3 0.6055 0.6055 1.0000 0.6055 0.6055
4 0.6055 0.6055 0.6055 1.0000 0.6055
5 0.6055 0.6055 0.6055 0.6055 1.0000
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Output 41.12.4 continued

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

CS id 6.4653 1.3833
Residual 4.2128 0.3928

The parameter estimates in Output 41.12.5 are the same as in the Poisson generalized linear model (Out-
put 41.12.2), because of the balance in these data. The standard errors have increased substantially, however,
by taking into account the correlations among the observations.

Output 41.12.5 GEE-Type Inference for Fixed Effects

Solutions for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept 1.3476 0.1574 Infty 8.56 <.0001
x1 0.1108 0.1161 Infty 0.95 0.3399
trt -0.1080 0.1937 Infty -0.56 0.5770
x1*trt -0.3016 0.1712 Infty -1.76 0.0781

Empirical Covariance Matrix for Fixed Effects

Effect Row Col1 Col2 Col3 Col4

Intercept 1 0.02476 -0.00115 -0.02476 0.001152
x1 2 -0.00115 0.01348 0.001152 -0.01348
trt 3 -0.02476 0.001152 0.03751 -0.00300
x1*trt 4 0.001152 -0.01348 -0.00300 0.02931

Example 41.13: Response Surface Comparisons with Multiplicity
Adjustments

Koch et al. (1990) present data for a multicenter clinical trial testing the efficacy of a respiratory drug in
patients with respiratory disease. Within each of two centers, patients were randomly assigned to a placebo
(P) or an active (A) treatment. Prior to treatment and at four follow-up visits, patient status was recorded in
one of five ordered categories (0=terrible, 1=poor, . . . , 4=excellent). The following DATA step creates the
SAS data set clinical for this study.

data Clinical;
do Center = 1, 2;

do Gender = 'F','M';
do Drug = 'A','P';
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input nPatient @@;
do iPatient = 1 to nPatient;

input ID Age (t0-t4) (1.) @@;
output;

end;
end;

end;
end;
datalines;

2 53 32 12242 18 47 22344
5 5 13 44444 19 31 21022 25 35 10000 28 36 23322

36 45 22221
25 54 11 44442 12 14 23332 51 15 02333 20 20 33231

16 22 12223 50 22 21344 3 23 33443 32 23 23444
56 25 23323 35 26 12232 26 26 22222 21 26 24142
8 28 12212 30 28 00121 33 30 33442 11 30 34443

42 31 12311 9 31 33444 37 31 02321 23 32 34433
6 34 11211 22 46 43434 24 48 23202 38 50 22222

48 57 33434
24 43 13 34444 41 14 22123 34 15 22332 29 19 23300

15 20 44444 13 23 33111 27 23 44244 55 24 34443
17 25 11222 45 26 24243 40 26 12122 44 27 12212
49 27 33433 39 23 21111 2 28 20000 14 30 10000
31 37 10000 10 37 32332 7 43 23244 52 43 11132
4 44 34342 1 46 22222 46 49 22222 47 63 22222

4 30 37 13444 52 39 23444 23 60 44334 54 63 44444
12 28 31 34444 5 32 32234 21 36 33213 50 38 12000

1 39 12112 48 39 32300 7 44 34444 38 47 23323
8 48 22100 11 48 22222 4 51 34244 17 58 14220

23 12 13 44444 10 14 14444 27 19 33233 47 20 24443
16 20 21100 29 21 33444 20 24 44444 25 25 34331
15 25 34433 2 25 22444 9 26 23444 49 28 23221
55 31 44444 43 34 24424 26 35 44444 14 37 43224
36 41 34434 51 43 33442 37 52 12122 19 55 44444
32 55 22331 3 58 44444 53 68 23334

16 39 11 34444 40 14 21232 24 15 32233 41 15 43334
33 19 42233 34 20 32444 13 20 14444 45 33 33323
22 36 24334 18 38 43000 35 42 32222 44 43 21000
6 45 34212 46 48 44000 31 52 23434 42 66 33344

;

Westfall and Tobias (2007) define as the measure of efficacy the average of the ratings at the final two visits
and model this average as a function of drug, baseline assessment score, and age. Hence, in their model, the
expected efficacy for drug d 2 A;P can be written as

E ŒYd � D ˇ0d C ˇ1d t C ˇ2da

where t is the baseline (pretreatment) assessment score and a is the patient’s age at baseline. The age
range for these data extends from 11 to 68 years. Suppose that the scientific question of interest is the
comparison of the two response surfaces at a set of values St � Sa D f0; 1; 2; 3; 4g � Sa. In other words,
you want to know for which values of the covariates the average response differs significantly between the
treatment group and the placebo group. If the set of ages of interest is f10; 13; 16; � � � ; 70g, then this involves
5 � 21 D 105 comparisons, a massive multiple testing problem. The large number of comparisons and the
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fact that the set Sa is chosen somewhat arbitrarily require the application of multiplicity corrections in order
to protect the familywise Type I error across the comparisons.

When testing hypotheses that have logical restrictions, the power of multiplicity corrected tests can be
increased by taking the restrictions into account. Logical restrictions exist, for example, when not all hy-
potheses in a set can be simultaneously true. Westfall and Tobias (2007) extend the truncated closed testing
procedure (TCTP) of Royen (1989) for pairwise comparisons in ANOVA to general contrasts. Their work
is also an extension of the S2 method of Shaffer (1986); see also Westfall (1997). These methods are all
monotonic in the (unadjusted) p-values of the individual tests, in the sense that if pj < pi then the multiple
test will never retain Hj while rejecting Hi . In terms of multiplicity-adjusted p-values Qpj , monotonicity
means that if pj < pi , then Qpj < Qpi .

Analysis as Normal Data with Averaged Endpoints

In order to apply the extended TCTP procedure of Westfall and Tobias (2007) to the problem of comparing
response surfaces in the clinical trial, the following convenience macro is helpful to generate the compar-
isons for the ESTIMATE statement in PROC GLIMMIX:

%macro Contrast(from,to,byA,byT);
%let nCmp = 0;
%do age = &from %to &to %by &byA;

%do t0 = 0 %to 4 %by &byT;
%let nCmp = %eval(&nCmp+1);

%end;
%end;
%let iCmp = 0;
%do age = &from %to &to %by &byA;

%do t0 = 0 %to 4 %by &byT;
%let iCmp = %eval(&iCmp+1);
"%trim(%left(&age)) %trim(%left(&t0))"
drug 1 -1
drug*age &age -&age
drug*t0 &t0 -&t0

%if (&icmp < &nCmp) %then %do; , %end;
%end;

%end;
%mend;

The following GLIMMIX statements fit the model to the data and compute the 105 contrasts that compare
the placebo to the active response at 105 points in the two-dimensional regressor space:

proc glimmix data=clinical;
t = (t3+t4)/2;
class drug;
model t = drug t0 age drug*age drug*t0;
estimate %contrast(10,70,3,1)

/ adjust=simulate(seed=1)
stepdown(type=logical);

ods output Estimates=EstStepDown;
run;

Note that only a single ESTIMATE statement is used. Each of the 105 comparisons is one comparison in
the multirow statement. The ADJUST option in the ESTIMATE statement requests multiplicity-adjusted
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p-values. The extended TCTP method is applied by specifying the STEPDOWN(TYPE=LOGICAL) op-
tion to compute step-down-adjusted p-values where logical constraints among the hypotheses are taken
into account. The results from the ESTIMATE statement are saved to a data set for subsequent pro-
cessing. Note also that the response, the average of the ratings at the final two visits, is computed with
programming statements in PROC GLIMMIX.

The following statements print the 20 most significant estimated differences (Output 41.13.1):

proc sort data=EstStepDown;
by Probt;

run;
proc print data=EstStepDown(obs=20);

var Label Estimate StdErr Probt AdjP;
run;

Output 41.13.1 The First 20 Observations of the Estimates Data Set

Obs Label Estimate StdErr Probt Adjp

1 37 2 0.8310 0.2387 0.0007 0.0071
2 40 2 0.8813 0.2553 0.0008 0.0071
3 34 2 0.7806 0.2312 0.0010 0.0071
4 43 2 0.9316 0.2794 0.0012 0.0071
5 46 2 0.9819 0.3093 0.0020 0.0071
6 31 2 0.7303 0.2338 0.0023 0.0081
7 49 2 1.0322 0.3434 0.0033 0.0107
8 52 2 1.0825 0.3807 0.0054 0.0167
9 40 3 0.7755 0.2756 0.0059 0.0200

10 37 3 0.7252 0.2602 0.0063 0.0201
11 43 3 0.8258 0.2982 0.0066 0.0201
12 28 2 0.6800 0.2461 0.0068 0.0215
13 55 2 1.1329 0.4202 0.0082 0.0239
14 46 3 0.8761 0.3265 0.0085 0.0239
15 34 3 0.6749 0.2532 0.0089 0.0257
16 43 1 1.0374 0.3991 0.0107 0.0329
17 46 1 1.0877 0.4205 0.0111 0.0329
18 49 3 0.9264 0.3591 0.0113 0.0329
19 40 1 0.9871 0.3827 0.0113 0.0329
20 58 2 1.1832 0.4615 0.0118 0.0329
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Notice that the adjusted p-values (Adjp) are larger than the unadjusted p-values, as expected. Also notice that
several comparisons share the same adjusted p-values. This is a result of the monotonicity of the extended
TCTP method.

In order to compare the step-down-adjusted p-values to adjusted p-values that do not use step-down methods,
replace the ESTIMATE statement in the previous statements with the following:

estimate %contrast2(10,70,3,1) / adjust=simulate(seed=1);
ods output Estimates=EstAdjust;

The following GLIMMIX invocations create output data sets named EstAdjust and EstUnAdjust that contain
(non-step-down-) adjusted and unadjusted p-values:

proc glimmix data=clinical;
t = (t3+t4)/2;
class drug;
model t = drug t0 age drug*age drug*t0;
estimate %contrast(10,70,3,1)

/ adjust=simulate(seed=1);
ods output Estimates=EstAdjust;

run;
proc glimmix data=clinical;

t = (t3+t4)/2;
class drug;
model t = drug t0 age drug*age drug*t0;
estimate %contrast(10,70,3,1);
ods output Estimates=EstUnAdjust;

run;

Output 41.13.2 shows a comparison of the significant comparisons (p < 0.05) based on unadjusted, adjusted,
and step-down (TCTP) adjusted p-values. Clearly, the unadjusted results indicate the most significant re-
sults, but without protecting the Type I error rate for the group of tests. The adjusted p-values (filled circles)
lead to a much smaller region in which the response surfaces between treatment and placebo are signifi-
cantly different. The increased power of the TCTP procedure (open circles) over the standard multiplicity
adjustment—without sacrificing Type I error protection—can be seen in the considerably larger region cov-
ered by the open circles.
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Output 41.13.2 Comparison of Significance Regions

Ordinal Repeated Measure Analysis

The outcome variable in this clinical trial is an ordinal rating of patients in categories 0=terrible, 1=poor,
2=fair, 3=good, and 4=excellent. Furthermore, the observations from repeat visits for the same patients are
likely correlated. The previous analysis removes the repeated measures aspect by defining efficacy as the
average score at the final two visits. These averages are not normally distributed, however. The response
surfaces for the two study arms can also be compared based on a model for ordinal data that takes correlation
into account through random effects. Keeping with the theme of the previous analysis, the focus here for
illustrative purposes is on the final two visits, and the pretreatment assessment score serves as a covariate in
the model.

The following DATA step rearranges the data from the third and fourth on-treatment visits in univariate form
with separate observations for the visits by patient:

data clinical_uv;
set clinical;
array time{2} t3-t4;
do i=1 to 2; rating = time{i}; output; end;

run;
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The basic model for the analysis is a proportional odds model with cumulative logit link (McCullagh 1980)
and J = 5 categories. In this model, separate intercepts (cutoffs) are modeled for the first J � 1 D 4

cumulative categories and the intercepts are monotonically increasing. This guarantees ordering of the
cumulative probabilities and nonnegative category probabilities. Using the same covariate structure as in
the previous analysis, the probability to observe a rating in at most category k � 4 is

Pr.Yd � k/ D
1

1C expf��kd g
�kd D ˛k C ˇ0d C ˇ1d t C ˇ2da

Because only the intercepts are dependent on the category, contrasts comparing regression coefficients can
be formulated in standard fashion. To accommodate the random and covariance structure of the repeated
measures model, a random intercept 
i is applied to the observations for each patient:

Pr.Yid � k/ D
1

1C expf��ikd g
�ikd D ˛k C ˇ0d C ˇ1d t C ˇ2daC 
i


i � iidN.0; �2
 /

The shared random effect of the two observations creates a marginal correlation. Note that the random
effects do not depend on category.

The following GLIMMIX statements fit this ordinal repeated measures model by maximum likelihood via
the Laplace approximation and compute TCTP-adjusted p-values for the 105 estimates:

proc glimmix data=clinical_uv method=laplace;
class center id drug;
model rating = drug t0 age drug*age drug*t0 /

dist=multinomial link=cumlogit;
random intercept / subject=id(center);
covtest 0;
estimate %contrast(10,70,3,1)

/ adjust=simulate(seed=1)
stepdown(type=logical);

ods output Estimates=EstStepDownMulti;
run;

The combination of DIST=MULTINOMIAL and LINK=CUMLOGIT requests the proportional odds
model. The SUBJECT= effect nests patient IDs within centers, because patient IDs in the data set clini-
cal are not unique within centers. (Specifying SUBJECT=ID*CENTER would have the same effect.) The
COVTEST statement requests a likelihood ratio test for the significance of the random patient effect.
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The estimate of the variance component for the random patient effect is substantial (Output 41.13.3), but so
is its standard error.

Output 41.13.3 Model and Covariance Parameter Information

The GLIMMIX Procedure

Model Information

Data Set WORK.CLINICAL_UV
Response Variable rating
Response Distribution Multinomial (ordered)
Link Function Cumulative Logit
Variance Function Default
Variance Matrix Blocked By ID(Center)
Estimation Technique Maximum Likelihood
Likelihood Approximation Laplace
Degrees of Freedom Method Containment

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

Intercept ID(Center) 10.3483 3.2599

Tests of Covariance Parameters
Based on the Likelihood

Label DF -2 Log Like ChiSq Pr > ChiSq Note

Parameter list 1 604.70 57.64 <.0001 MI

MI: P-value based on a mixture of chi-squares.

The likelihood ratio test provides a better picture of the significance of the variance component. The dif-
ference in the –2 log likelihoods is 57.6, highly significant even if one does not apply the Self and Liang
(1987) correction that halves the p-value in this instance.
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The results for the 20 most significant estimates are requested with the following statements and shown in
Output 41.13.4:

proc sort data=EstStepDownMulti;
by Probt;

run;
proc print data=EstStepDownMulti(obs=20);

var Label Estimate StdErr Probt AdjP;
run;

The p-values again show the “repeat” pattern corresponding to the monotonicity of the step-down procedure.

Output 41.13.4 The First 20 Estimates in the Ordinal Analysis

Obs Label Estimate StdErr Probt Adjp

1 37 2 -2.7224 0.8263 0.0013 0.0133
2 40 2 -2.8857 0.8842 0.0015 0.0133
3 34 2 -2.5590 0.7976 0.0018 0.0133
4 43 2 -3.0491 0.9659 0.0021 0.0133
5 46 2 -3.2124 1.0660 0.0032 0.0133
6 31 2 -2.3957 0.8010 0.0034 0.0133
7 49 2 -3.3758 1.1798 0.0051 0.0164
8 52 2 -3.5391 1.3037 0.0077 0.0236
9 40 3 -2.6263 0.9718 0.0080 0.0267

10 37 3 -2.4630 0.9213 0.0087 0.0267
11 28 2 -2.2323 0.8362 0.0088 0.0278
12 43 3 -2.7897 1.0451 0.0088 0.0278
13 46 3 -2.9530 1.1368 0.0107 0.0291
14 55 2 -3.7025 1.4351 0.0112 0.0324
15 34 3 -2.2996 0.8974 0.0118 0.0337
16 49 3 -3.1164 1.2428 0.0136 0.0344
17 43 1 -3.3085 1.3438 0.0154 0.0448
18 58 2 -3.8658 1.5722 0.0155 0.0448
19 40 1 -3.1451 1.2851 0.0160 0.0448
20 46 1 -3.4718 1.4187 0.0160 0.0448

As previously, the comparisons were also performed with standard p-value adjustment via simulation. Out-
put 41.13.5 displays the components of the regressor space in which the response surfaces differ significantly
(p < 0.05) between the two treatment arms. As before, the most significant differences occur with unadjusted
p-values at the cost of protecting only the individual Type I error rate. The standard multiplicity adjustment
has considerably less power than the TCTP adjustment.
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Output 41.13.5 Comparison of Significance Regions, Ordinal Analysis

Example 41.14: Generalized Poisson Mixed Model for Overdispersed Count
Data

Overdispersion is the condition by which data appear more dispersed than is expected under a reference
model. For count data, the reference models are typically based on the binomial or Poisson distributions.
Among the many reasons for overdispersion are an incorrect model, an incorrect distributional specification,
incorrect variance functions, positive correlation among the observations, and so forth. In short, correcting
an overdispersion problem, if it exists, requires the appropriate remedy. Adding an R-side scale parameter to
multiply the variance function is not necessarily the adequate correction. For example, Poisson-distributed
data appear overdispersed relative to a Poisson model with regressors when an important regressor is omit-
ted.

If the reference model for count data is Poisson, a number of alternative model formulations are available
to increase the dispersion. For example, zero-inflated models add a proportion of zeros (usually from a
Bernoulli process) to the zeros of a Poisson process. Hurdle models are two-part models where zeros and
nonzeros are generated by different stochastic processes. Zero-inflated and hurdle models are described in
detail by Cameron and Trivedi (1998) and cannot be fit with the GLIMMIX procedure. See Section 15.5 in
Littell et al. (2006) for examples of using the NLMIXED procedure to fit zero-inflated and hurdle models.
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An alternative approach is to derive from the reference distribution a probability distribution that exhibits
increased dispersion. By mixing a Poisson process with a gamma distribution for the Poisson parameter, for
example, the negative binomial distribution results, which is thus overdispersed relative to the Poisson.

Joe and Zhu (2005) show that the generalized Poisson distribution can also be motivated as a Poisson
mixture and hence provides an alternative to the negative binomial (NB) distribution. Like the NB, the
generalized Poisson distribution has a scale parameter. It is heavier in the tails than the NB distribution
and easily reduces to the standard Poisson. Joe and Zhu (2005) discuss further comparisons between these
distributions.

The probability mass function of the generalized Poisson is given by

p.y/ D
˛

yŠ
.˛ C �y/y�1 exp f�˛ � �yg

where y D 0; 1; 2; � � � , ˛ > 0, and 0 � � < 1 (Joe and Zhu 2005). Notice that for � D 0 the mass
function of the standard Poisson distribution with mean ˛ results. The mean and variance of Y in terms of
the parameters ˛ and � are given by

EŒY � D
˛

1 � �
D �

VarŒY � D
˛

.1 � �/3
D

�

.1 � �/2

The log likelihood of the generalized Poisson can thus be written in terms of the mean � and scale parameter
� as

l.�; �Iy/ D log f�.1 � �/g C .y � 1/ log f� � �.� � y/g
� .� � �.� � y// � log f�.y C 1/g

The data in the following DATA step are simulated counts. For each of i D 1; � � � ; 30 subjects a randomly
varying number ni of observations were drawn from a count regression model with a single covariate and
excess zeros (compared to a Poisson distribution).

data counts;
input ni @@;
sub = _n_;
do i=1 to ni;

input x y @@;
output;

end;
datalines;

1 29 0
6 2 0 82 5 33 0 15 2 35 0 79 0

19 81 0 18 0 85 0 99 0 20 0 26 2 29 0 91 2 37 0 39 0 9 1 33 0
3 0 60 0 87 2 80 0 75 0 3 0 63 1

9 18 0 64 0 80 0 0 0 58 0 7 0 81 0 22 3 50 0
15 91 0 2 1 14 0 5 2 27 1 8 1 95 0 76 0 62 0 26 2 9 0 72 1

98 0 94 0 23 1
2 34 0 95 0

18 48 1 5 0 47 0 44 0 27 0 88 0 27 0 68 0 84 0 86 0 44 0 90 0
63 0 27 0 47 0 25 0 72 0 62 1

13 28 1 31 0 63 0 14 0 74 0 44 0 75 0 65 0 74 1 84 0 57 0 29 0
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41 0
9 42 0 8 0 91 0 20 0 23 0 22 0 96 0 83 0 56 0
3 64 0 64 1 15 0
4 5 0 73 2 50 1 13 0
2 0 0 41 0

20 21 0 58 0 5 0 61 1 28 0 71 0 75 1 94 16 51 4 51 2 74 0 1 1
34 0 7 0 11 0 60 3 31 0 75 0 62 0 54 1

2 66 1 13 0
5 83 7 98 1 11 1 28 0 18 0

17 29 5 79 0 39 2 47 2 80 1 19 0 37 0 78 1 26 0 72 1 6 0 50 3
50 4 97 0 37 2 51 0 45 0

17 47 0 57 0 33 0 47 0 2 0 83 0 74 0 93 0 36 0 53 0 26 0 86 0
6 0 17 0 30 0 70 1 99 0

7 91 0 25 1 51 4 20 0 61 1 34 0 33 2
14 60 0 87 0 94 0 29 0 41 0 78 0 50 0 37 0 15 0 39 0 22 0 82 0

93 0 3 0
16 68 0 26 1 19 0 60 1 93 3 65 0 16 0 79 0 14 0 3 1 90 0 28 3

82 0 34 0 30 0 81 0
19 48 3 48 1 43 2 54 0 45 9 53 0 14 0 92 5 21 1 20 0 73 0 99 0

66 0 86 2 63 0 10 0 92 14 44 1 74 0
8 34 1 44 0 62 0 21 0 7 0 17 0 0 2 49 0

13 11 0 27 2 16 1 12 3 52 1 55 0 2 6 89 5 31 5 28 3 51 5 54 13
64 0

9 3 0 36 0 57 0 77 0 41 0 39 0 55 0 57 0 88 1
7 2 0 80 0 41 1 20 0 2 0 27 0 40 0

18 73 1 66 0 10 0 42 0 22 0 59 9 68 0 34 1 96 0 30 0 13 0 35 0
51 2 47 0 60 1 55 4 83 3 38 0

17 96 0 40 0 34 0 59 0 12 1 47 0 93 0 50 0 39 0 97 0 19 0 54 0
11 0 29 0 70 2 87 0 47 0

13 59 0 96 0 47 1 64 0 18 0 30 0 37 0 36 1 69 0 78 1 47 1 86 0
88 0

15 66 0 45 1 96 1 17 0 91 0 4 0 22 0 5 2 47 0 38 0 80 0 7 1
38 1 33 0 52 0

12 84 6 60 1 33 1 92 0 38 0 6 0 43 3 13 2 18 0 51 0 50 4 68 0
;

The following PROC GLIMMIX statements fit a standard Poisson regression model with random inter-
cepts by maximum likelihood. The marginal likelihood of the data is approximated by adaptive quadrature
(METHOD=QUAD).

proc glimmix data=counts method=quad;
class sub;
model y = x / link=log s dist=poisson;
random int / subject=sub;

run;

Output 41.14.1 displays various informational items about the model and the estimation process.
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Output 41.14.1 Poisson: Model and Optimization Information

The GLIMMIX Procedure

Model Information

Data Set WORK.COUNTS
Response Variable y
Response Distribution Poisson
Link Function Log
Variance Function Default
Variance Matrix Blocked By sub
Estimation Technique Maximum Likelihood
Likelihood Approximation Gauss-Hermite Quadrature
Degrees of Freedom Method Containment

Optimization Information

Optimization Technique Dual Quasi-Newton
Parameters in Optimization 3
Lower Boundaries 1
Upper Boundaries 0
Fixed Effects Not Profiled
Starting From GLM estimates
Quadrature Points 5

Iteration History

Objective Max
Iteration Restarts Evaluations Function Change Gradient

0 0 4 862.57645728 . 366.7105
1 0 5 862.43893582 0.13752147 22.36158
2 0 6 854.49131023 7.94762559 28.70814
3 0 2 854.47983504 0.01147519 6.036114
4 0 4 854.47396189 0.00587315 4.238363
5 0 4 854.47006558 0.00389631 0.332454
6 0 3 854.47006484 0.00000074 0.003104

The “Model Information” table shows that the parameters are estimated by ML with quadrature. Using
the starting values for fixed effects and covariance parameters that the GLIMMIX procedure generates by
default, the procedure determined that five quadrature nodes provide a sufficiently accurate approximation of
the marginal log likelihood (“Optimization Information” table). The iterative estimation process converges
after nine iterations.

The table of conditional fit statistics displays the sum of the independent contributions to the conditional –2
log likelihood (854.47) and the Pearson statistics for the conditional distribution (Output 41.14.2).
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Output 41.14.2 Poisson: Fit Statistics and Estimates

Fit Statistics

-2 Log Likelihood 854.47
AIC (smaller is better) 860.47
AICC (smaller is better) 860.54
BIC (smaller is better) 864.67
CAIC (smaller is better) 867.67
HQIC (smaller is better) 861.81

Fit Statistics for Conditional
Distribution

-2 log L(y | r. effects) 777.90
Pearson Chi-Square 649.58
Pearson Chi-Square / DF 1.97

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

Intercept sub 1.1959 0.4334

Solutions for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept -1.4947 0.2745 29 -5.45 <.0001
x 0.01207 0.002387 299 5.06 <.0001

The departure of the scaled Pearson statistic from 1.0 is fairly pronounced in this case (1.97). If one deems
it to far from 1.0, however, the conclusion has to be that the conditional variation is not properly specified.
This could be due to an incorrect variance function, for example. The “Solutions for Fixed Effects” table
shows the estimates of the slope and intercept in this model along with their standard errors and tests of
significance. Note that the slope in this model is highly significant. The variance of the random subject-
specific intercepts is estimated as 1.1959.

To fit the generalized Poisson distribution to these data, you cannot draw on the built-in distributions. In-
stead, the variance function and the log likelihood are computed directly with PROC GLIMMIX program-
ming statements. The CLASS, MODEL, and RANDOM statements in the following PROC GLIMMIX
program are as before, except for the omission of the DIST= option in the MODEL statement:

proc glimmix data=counts method=quad;
class sub;
model y = x / link=log s;
random int / subject=sub;
xi = (1 - 1/exp(_phi_));
_variance_ = _mu_ / (1-xi)/(1-xi);



Example 41.14: Generalized Poisson Mixed Model for Overdispersed Count Data F 3237

if (_mu_=.) or (_linp_ = .) then _logl_ = .;
else do;

mustar = _mu_ - xi*(_mu_ - y);
if (mustar < 1E-12) or (_mu_*(1-xi) < 1e-12) then

_logl_ = -1E20;
else do;

_logl_ = log(_mu_*(1-xi)) + (y-1)*log(mustar) -
mustar - lgamma(y+1);

end;
end;

run;

The assignments to the variables xi and the reserved symbols _VARIANCE_ and _LOGL_ define the vari-
ance function and the log likelihood. Because the scale parameter of the generalized Poisson distribution
has the range 0 < � < 1, and the scale parameter _PHI_ in the GLIMMIX procedure is bounded only from
below (by 0), a reparameterization is applied so that � D 0 , � D 0 and � approaches 1 as � increases.
The statements preceding the calculation of the actual log likelihood are intended to prevent floating-point
exceptions and to trap missing values.

Output 41.14.3 displays information about the model and estimation process. The “Model Information”
table shows that the distribution is not a built-in distribution and echoes the expression for the user-specified
variance function. As in the case of the Poisson model, the GLIMMIX procedure determines that five
quadrature points are sufficient for accurate estimation of the marginal log likelihood at the starting values.
The estimation process converges after 11 iterations.

Output 41.14.3 Generalized Poisson: Model, Optimization, and Iteration Information

The GLIMMIX Procedure

Model Information

Data Set WORK.COUNTS
Response Variable y
Response Distribution User specified
Link Function Log
Variance Function _mu_ / (1-xi)/(1-xi)
Variance Matrix Blocked By sub
Estimation Technique Maximum Likelihood
Likelihood Approximation Gauss-Hermite Quadrature
Degrees of Freedom Method Containment

Optimization Information

Optimization Technique Dual Quasi-Newton
Parameters in Optimization 4
Lower Boundaries 2
Upper Boundaries 0
Fixed Effects Not Profiled
Starting From GLM estimates
Quadrature Points 5
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Output 41.14.3 continued

Iteration History

Objective Max
Iteration Restarts Evaluations Function Change Gradient

0 0 4 716.12976769 . 161.1184
1 0 5 716.07585953 0.05390816 11.88788
2 0 4 714.27148068 1.80437884 36.09657
3 0 2 711.02643265 3.24504804 108.4615
4 0 2 710.26952196 0.75691069 216.9822
5 0 2 709.96824991 0.30127205 96.2775
6 0 3 709.8419071 0.12634280 19.07487
7 0 3 709.83122731 0.01067980 0.649164
8 0 3 709.83047646 0.00075085 2.127665
9 0 3 709.83046461 0.00001185 0.383319

10 0 3 709.83046436 0.00000025 0.010279

The achieved –2 log likelihood is lower than in the Poisson model (compare “Fit Statistics” tables in Out-
put 41.14.4 and Output 41.14.1). The scaled Pearson statistic is now less than 1.0. The fixed slope estimate
remains significant at the 5% level, but the test statistics are not as large as in the Poisson model, partly
because the generalized Poisson model permits more variation.

Output 41.14.4 Generalized Poisson: Fit Statistics and Estimates

Fit Statistics

-2 Log Likelihood 709.83
AIC (smaller is better) 717.83
AICC (smaller is better) 717.95
BIC (smaller is better) 723.44
CAIC (smaller is better) 727.44
HQIC (smaller is better) 719.62

Fit Statistics for Conditional
Distribution

-2 log L(y | r. effects) 665.56
Pearson Chi-Square 241.42
Pearson Chi-Square / DF 0.73

Covariance Parameter Estimates

Standard
Cov Parm Subject Estimate Error

Intercept sub 0.5135 0.2400
Scale 0.6401 0.09718
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Output 41.14.4 continued

Solutions for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept -0.7264 0.2749 29 -2.64 0.0131
x 0.003742 0.003537 299 1.06 0.2910

Based on the large difference in the –2 log likelihoods between the Poisson and generalized Poisson models,
you conclude that a mixed model based on the latter provides a better fit to these data. From the “Covariance
Parameter Estimates” table in Output 41.14.4, you can see that the estimate of the scale parameter is b� D
0:6401 and is considerably larger than 0, taking into account its standard error. The hypothesis H W� D 0,
which articulates that a Poisson model fits the data as well as the generalized Poisson model, can be formally
tested with a likelihood ratio test. Adding the following statement to the previous PROC GLIMMIX run
compares the model to one in which the variance of the random intercepts (the first covariance parameter)
is not constrained and the scale parameter is fixed at zero:

covtest 'H: phi = 0' . 0 / est;

This COVTEST statement produces Output 41.14.5.

Output 41.14.5 Likelihood Ratio Test for Poisson Assumption

Tests of Covariance Parameters
Based on the Likelihood

---Estimates H0---
Label DF -2 Log Like ChiSq Pr > ChiSq Est1 Est2 Note

H:phi = 0 1 854.47 144.64 <.0001 1.1959 1.11E-12 MI

MI: P-value based on a mixture of chi-squares.

Note that the –2 Log Like reported in Output 41.14.5 agrees with the value reported in the “Fit Statistics”
table for the Poisson model (Output 41.14.2) and that the estimate of the random intercept under the null
hypothesis agrees with the “Covariance Parameter Estimates” table in Output 41.14.2. Because the null
hypothesis places the parameter � (or �) on the boundary of the parameter space, a mixture correction is
applied in the p-value calculation. Because of the magnitude of the likelihood ratio statistic (144.64), this
correction has no effect on the displayed p-value.
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Example 41.15: Comparing Multiple B-Splines
This example uses simulated data to demonstrate the use of the nonpositional syntax (see the section “Po-
sitional and Nonpositional Syntax for Contrast Coefficients” on page 3097 for details) in combination with
the experimental EFFECT statement to produce interesting predictions and comparisons in models contain-
ing fixed spline effects. Consider the data in the following DATA step. Each of the 100 observations for the
continuous response variable y is associated with one of two groups.

data spline;
input group y @@;
x = _n_;
datalines;

1 -.020 1 0.199 2 -1.36 1 -.026
2 -.397 1 0.065 2 -.861 1 0.251
1 0.253 2 -.460 2 0.195 2 -.108
1 0.379 1 0.971 1 0.712 2 0.811
2 0.574 2 0.755 1 0.316 2 0.961
2 1.088 2 0.607 2 0.959 1 0.653
1 0.629 2 1.237 2 0.734 2 0.299
2 1.002 2 1.201 1 1.520 1 1.105
1 1.329 1 1.580 2 1.098 1 1.613
2 1.052 2 1.108 2 1.257 2 2.005
2 1.726 2 1.179 2 1.338 1 1.707
2 2.105 2 1.828 2 1.368 1 2.252
1 1.984 2 1.867 1 2.771 1 2.052
2 1.522 2 2.200 1 2.562 1 2.517
1 2.769 1 2.534 2 1.969 1 2.460
1 2.873 1 2.678 1 3.135 2 1.705
1 2.893 1 3.023 1 3.050 2 2.273
2 2.549 1 2.836 2 2.375 2 1.841
1 3.727 1 3.806 1 3.269 1 3.533
1 2.948 2 1.954 2 2.326 2 2.017
1 3.744 2 2.431 2 2.040 1 3.995
2 1.996 2 2.028 2 2.321 2 2.479
2 2.337 1 4.516 2 2.326 2 2.144
2 2.474 2 2.221 1 4.867 2 2.453
1 5.253 2 3.024 2 2.403 1 5.498

;

The following statements produce a scatter plot of the response variable by group (Output 41.15.1):

proc sgplot data=spline;
scatter y=y x=x / group=group name="data";
keylegend "data" / title="Group";

run;
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Output 41.15.1 Scatter Plot of Observed Data by Group

The trends in the two groups exhibit curvature, but the type of curvature is not the same in the groups.
Also, there appear to be ranges of x values where the groups are similar and areas where the point scatters
separate. To model the trends in the two groups separately and with flexibility, you might want to allow for
some smooth trends in x that vary by group. Consider the following PROC GLIMMIX statements:

proc glimmix data=spline outdesign=x;
class group;
effect spl = spline(x);
model y = group spl*group / s noint;
output out=gmxout pred=p;

run;

The EFFECT statement defines a constructed effect named spl by expanding the x into a spline with seven
columns. The group main effect creates separate intercepts for the groups, and the interaction of the group
variable with the spline effect creates separate trends. The NOINT option suppresses the intercept. This is
not necessary and is done here only for convenience of interpretation. The OUTPUT statement computes
predicted values.

The “Parameter Estimates” table contains the estimates of the group-specific “intercepts,” the spline coeffi-
cients varied by group, and the residual variance (“Scale,” Output 41.15.2).
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Output 41.15.2 Parameter Estimates in Two-Group Spline Model

The GLIMMIX Procedure

Parameter Estimates

Standard
Effect spl group Estimate Error DF t Value Pr > |t|

group 1 9.7027 3.1342 86 3.10 0.0026
group 2 6.3062 2.6299 86 2.40 0.0187
spl*group 1 1 -11.1786 3.7008 86 -3.02 0.0033
spl*group 1 2 -20.1946 3.9765 86 -5.08 <.0001
spl*group 2 1 -9.5327 3.2576 86 -2.93 0.0044
spl*group 2 2 -5.8565 2.7906 86 -2.10 0.0388
spl*group 3 1 -8.9612 3.0718 86 -2.92 0.0045
spl*group 3 2 -5.5567 2.5717 86 -2.16 0.0335
spl*group 4 1 -7.2615 3.2437 86 -2.24 0.0278
spl*group 4 2 -4.3678 2.7247 86 -1.60 0.1126
spl*group 5 1 -6.4462 2.9617 86 -2.18 0.0323
spl*group 5 2 -4.0380 2.4589 86 -1.64 0.1042
spl*group 6 1 -4.6382 3.7095 86 -1.25 0.2146
spl*group 6 2 -4.3029 3.0479 86 -1.41 0.1616
spl*group 7 1 0 . . . .
spl*group 7 2 0 . . . .
Scale 0.07352 0.01121 . . .

Because the B-spline coefficients for an observation sum to 1 and the model contains group-specific con-
stants, the last spline coefficient in each group is zero. In other words, you can achieve exactly the same fit
with the MODEL statement

model y = spl*group / noint;

or

model y = spl*group;

The following statements graph the observed and fitted values in the two groups (Output 41.15.3):

proc sgplot data=gmxout;
series y=p x=x / group=group name="fit";
scatter y=y x=x / group=group;
keylegend "fit" / title="Group";

run;
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Output 41.15.3 Observed and Predicted Values by Group

Suppose that you are interested in estimating the mean response at particular values of x and in performing
comparisons of predicted values. The following program uses ESTIMATE statements with nonpositional
syntax to accomplish this:

proc glimmix data=spline;
class group;
effect spl = spline(x);
model y = group spl*group / s noint;
estimate 'Group 1, x=20' group 1 group*spl [1,1 20] / e;
estimate 'Group 2, x=20' group 0 1 group*spl [1,2 20];
estimate 'Diff at x=20 ' group 1 -1 group*spl [1,1 20] [-1,2 20];

run;
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The first ESTIMATE statement predicts the mean response at x = 20 in group 1. The E option requests the
coefficient vector for this linear combination of the parameter estimates. The coefficient for the group effect
is entered with positional (standard) syntax. The coefficients for the group*spl effect are formed based
on nonpositional syntax. Because this effect comprises the interaction of a standard effect (group) with a
constructed effect, the values and levels for the standard effect must precede those for the constructed effect.
A similar statement produces the predicted mean at x = 20 in group 2.

The GLIMMIX procedure interprets the syntax

group*spl [1,2 20]

as follows: construct the spline basis at x = 20 as appropriate for group 2; then multiply the resulting
coefficients for these columns of the L matrix with 1.

The final ESTIMATE statement represents the difference between the predicted values; it is a group com-
parison at x = 20.

Output 41.15.4 Coefficients from First ESTIMATE Statement

The GLIMMIX Procedure

Coefficients for Estimate
Group 1, x=20

Effect spl group Row1

group 1 1
group 2
spl*group 1 1 0.0021
spl*group 1 2
spl*group 2 1 0.3035
spl*group 2 2
spl*group 3 1 0.619
spl*group 3 2
spl*group 4 1 0.0754
spl*group 4 2
spl*group 5 1
spl*group 5 2
spl*group 6 1
spl*group 6 2
spl*group 7 1
spl*group 7 2

The “Coefficients” table shows how the value 20 supplied in the ESTIMATE statement was expanded into
the appropriate spline basis (Output 41.15.4). There is no significant difference between the group means at
x = 20 (p = 0.8346, Output 41.15.5).
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Output 41.15.5 Results from ESTIMATE Statements

Estimates

Standard
Label Estimate Error DF t Value Pr > |t|

Group 1, x=20 0.6915 0.09546 86 7.24 <.0001
Group 2, x=20 0.7175 0.07953 86 9.02 <.0001
Diff at x=20 -0.02602 0.1243 86 -0.21 0.8346

The group comparisons you can achieve in this way are comparable to slices of interaction effects with
classification effects. There are, however, no preset number of levels at which to perform the compar-
isons because x is continuous. If you add further x values for the comparisons, a multiplicity correction
is in order to control the familywise Type I error. The following statements compare the groups at values
x D 0; 5; 10; � � � ; 80 and compute simulation-based step-down-adjusted p-values. The results appear in
Output 41.15.6. (The numeric results for simulation-based p-value adjustments depend slightly on the value
of the random number seed.)

ods select Estimates;
proc glimmix data=spline;

class group;
effect spl = spline(x);
model y = group spl*group / s;
estimate 'Diff at x= 0' group 1 -1 group*spl [1,1 0] [-1,2 0],

'Diff at x= 5' group 1 -1 group*spl [1,1 5] [-1,2 5],
'Diff at x=10' group 1 -1 group*spl [1,1 10] [-1,2 10],
'Diff at x=15' group 1 -1 group*spl [1,1 15] [-1,2 15],
'Diff at x=20' group 1 -1 group*spl [1,1 20] [-1,2 20],
'Diff at x=25' group 1 -1 group*spl [1,1 25] [-1,2 25],
'Diff at x=30' group 1 -1 group*spl [1,1 30] [-1,2 30],
'Diff at x=35' group 1 -1 group*spl [1,1 35] [-1,2 35],
'Diff at x=40' group 1 -1 group*spl [1,1 40] [-1,2 40],
'Diff at x=45' group 1 -1 group*spl [1,1 45] [-1,2 45],
'Diff at x=50' group 1 -1 group*spl [1,1 50] [-1,2 50],
'Diff at x=55' group 1 -1 group*spl [1,1 55] [-1,2 55],
'Diff at x=60' group 1 -1 group*spl [1,1 60] [-1,2 60],
'Diff at x=65' group 1 -1 group*spl [1,1 65] [-1,2 65],
'Diff at x=70' group 1 -1 group*spl [1,1 70] [-1,2 70],
'Diff at x=75' group 1 -1 group*spl [1,1 75] [-1,2 75],
'Diff at x=80' group 1 -1 group*spl [1,1 80] [-1,2 80] /
adjust=sim(seed=1) stepdown;

run;
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Output 41.15.6 Estimates with Multiplicity Adjustments

The GLIMMIX Procedure

Estimates
Adjustment for Multiplicity: Holm-Simulated

Standard
Label Estimate Error DF t Value Pr > |t| Adj P

Diff at x= 0 12.4124 4.2130 86 2.95 0.0041 0.0210
Diff at x= 5 1.0376 0.1759 86 5.90 <.0001 <.0001
Diff at x=10 0.3778 0.1540 86 2.45 0.0162 0.0554
Diff at x=15 0.05822 0.1481 86 0.39 0.6952 0.9043
Diff at x=20 -0.02602 0.1243 86 -0.21 0.8346 0.9578
Diff at x=25 0.02014 0.1312 86 0.15 0.8783 0.9578
Diff at x=30 0.1023 0.1378 86 0.74 0.4600 0.7419
Diff at x=35 0.1924 0.1236 86 1.56 0.1231 0.2890
Diff at x=40 0.2883 0.1114 86 2.59 0.0113 0.0465
Diff at x=45 0.3877 0.1195 86 3.24 0.0017 0.0098
Diff at x=50 0.4885 0.1308 86 3.74 0.0003 0.0022
Diff at x=55 0.5903 0.1231 86 4.79 <.0001 <.0001
Diff at x=60 0.7031 0.1125 86 6.25 <.0001 <.0001
Diff at x=65 0.8401 0.1203 86 6.99 <.0001 <.0001
Diff at x=70 1.0147 0.1348 86 7.52 <.0001 <.0001
Diff at x=75 1.2400 0.1326 86 9.35 <.0001 <.0001
Diff at x=80 1.5237 0.1281 86 11.89 <.0001 <.0001

There are significant differences at the low end and high end of the x range. Notice that without the multi-
plicity adjustment you would have concluded at the 0.05 level that the groups are significantly different at x
= 10. At the 0.05 level, the groups separate significantly for x < 10 and x > 40.

Example 41.16: Diallel Experiment with Multimember Random Effects
Cockerham and Weir (1977) apply variance component models in the analysis of reciprocal crosses. In
these experiments, it is of interest to separate genetically determined variation from variation determined
by parentage. This example analyzes the data for the diallel experiment in Cockerham and Weir (1977,
Appendix C). A diallel is a mating design that consists of all possible crosses of a set of parental lines. It
includes reciprocal crossings, but not self-crossings.

The basic model for a cross is Yijk D ˇ C ˛ij C �ijk , where Yijk is the observation for offspring k from
maternal parent i and paternal parent j. The various models in Cockerham and Weir (1977) are different
decompositions of the term ˛ij , the total effect that is due to the parents. Their “bio model” (model (c))
decomposes ˛ij into

˛ij D �i C �j C �i C �j C .��/ij C �ij

where �i and �j are contributions of the female and male parents, respectively. The term .��/ij captures
the interaction between maternal and paternal effects. In contrast to usual interaction effects, this term must
obey a symmetry because of the reciprocals: .��/ij D .��/j i . The terms �i and �j in the decomposition
are extranuclear maternal and paternal effects, and the remaining interactions are captured by the �ij term.
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The following DATA step creates a SAS data set for the diallel example in Appendix C of Cockerham and
Weir (1977):

data diallel;
label time = 'Flowering time in days';
do p = 1 to 8;

do m = 1 to 8;
if (m ne p) then do;

sym = trim(left(min(m,p))) || ',' || trim(left(max(m,p)));
do block = 1 to 2;

input time @@;
output;

end;
end;

end;
end;
datalines;

14.4 16.2 27.2 30.8 17.2 27.0 18.3 20.2 16.2 16.8 18.6 14.4 16.4 16.0
15.4 16.5 14.8 14.6 18.6 18.6 15.2 15.3 17.0 15.2 14.4 14.8 10.8 13.2
31.8 30.4 21.0 23.0 24.6 25.4 19.2 20.0 29.8 28.4 12.8 14.2 13.0 14.4
16.2 17.8 11.4 13.0 16.8 16.3 12.4 14.2 16.8 14.8 12.6 12.2 9.6 11.2
14.6 18.8 12.2 13.6 15.2 15.4 15.2 13.8 18.0 16.0 10.4 12.2 13.4 20.0
20.2 23.4 14.2 14.0 18.6 14.8 22.2 17.0 14.3 17.3 9.0 10.2 11.8 12.8
14.0 16.6 12.2 9.2 13.6 16.2 13.8 14.4 15.6 15.6 15.6 11.0 13.0 9.8
15.2 17.2 10.0 11.6 17.0 18.2 20.8 20.8 20.0 17.4 17.0 12.6 13.0 9.8
;

The observations represent mean flowering times of Nicotiana rustica (Aztec tobacco) from crosses of
inbred varieties grown in two blocks. The variables p and m identify the eight paternal and maternal lines,
respectively. The variable sym is used to model the interaction between the parents, subject to the symmetry
condition .��/ij D .��/j i . For example, the first two observations, 14.4 and 16.2 days, represent the
observations from blocks 1 and 2 where paternal line 1 was crossed with maternal line 2.

The following PROC GLIMMIX statements fit the “bio model” in Cockerham and Weir (1977):

proc glimmix data=diallel outdesign(z)=zmat;
class block sym p m;
effect line = mm(p m);
model time = block;
random line sym p m p*m;

run;

The EFFECT statement defines the nuclear parental contributions as a multimember effect based on the
CLASS variables p and m. Each observation has two nonzero entries in the design matrix for the effect
that identifies the paternal and maternal lines. The terms in the RANDOM statement model the variance
components as follows: line ! �2n , sym ! �2

.��/
, p ! �2� , m ! �2�, p*m ! �2� . The OUTDESIGN=

option in the PROC GLIMMIX statement writes the Z matrix to the SAS data set zmat. The EFFECT
statement alleviates the need for complex coding, as in Section 2.3 of Saxton (2004).

Output 41.16.1 displays the “Class Level Information” table of the diallel model. Because the interaction
terms are symmetric, there are only 8 � 7=2 D 28 levels for the 8 lines. The estimates of the variance
components and the residual variance in Output 41.16.1 agree with the results in Table 7 of Cockerham and
Weir (1977).
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Output 41.16.1 Class Levels and Covariance Parameter Estimates in Diallel Example

The GLIMMIX Procedure

Class Level Information

Class Levels Values

block 2 1 2
sym 28 1,2 1,3 1,4 1,5 1,6 1,7 1,8 2,3 2,4 2,5 2,6

2,7 2,8 3,4 3,5 3,6 3,7 3,8 4,5 4,6 4,7 4,8
5,6 5,7 5,8 6,7 6,8 7,8

p 8 1 2 3 4 5 6 7 8
m 8 1 2 3 4 5 6 7 8

Covariance Parameter Estimates

Standard
Cov Parm Estimate Error

line 5.1047 4.0021
sym 2.3856 1.9025
p 3.3080 3.4053
m 1.9134 2.9891
p*m 4.0196 1.8323
Residual 3.6225 0.6908

The following statements print the Z matrix columns that correspond to the multimember line effect for the
first 10 observations in block 1 (Output 41.16.2). For each observation there are two nonzero entries, and
their column index corresponds to the index of the paternal and maternal line.

proc print data=zmat(where=(block=1) obs=10);
var p m time _z1-_z8;

run;

Output 41.16.2 Z Matrix for Line Effect of the First 10 Observations in Block 1

Obs p m time _Z1 _Z2 _Z3 _Z4 _Z5 _Z6 _Z7 _Z8

1 1 2 14.4 1 1 0 0 0 0 0 0
3 1 3 27.2 1 0 1 0 0 0 0 0
5 1 4 17.2 1 0 0 1 0 0 0 0
7 1 5 18.3 1 0 0 0 1 0 0 0
9 1 6 16.2 1 0 0 0 0 1 0 0

11 1 7 18.6 1 0 0 0 0 0 1 0
13 1 8 16.4 1 0 0 0 0 0 0 1
15 2 1 15.4 1 1 0 0 0 0 0 0
17 2 3 14.8 0 1 1 0 0 0 0 0
19 2 4 18.6 0 1 0 1 0 0 0 0
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Example 41.17: Linear Inference Based on Summary Data
The GLIMMIX procedure has facilities for multiplicity-adjusted inference through the ADJUST= and
STEPDOWN options in the ESTIMATE, LSMEANS, and LSMESTIMATE statements. You can employ
these facilities to test linear hypotheses among parameters even in situations where the quantities were
obtained outside the GLIMMIX procedure. This example demonstrates the process. The basic idea is to
prepare a data set containing the estimates of interest and a data set containing their covariance matrix.
These are then passed to the GLIMMIX procedure, preventing updating of the parameters, essentially mov-
ing directly into the post-processing stage as if estimates with this covariance matrix had been produced by
the GLIMMIX procedure.

The final documentation example in Chapter 63, “The NLIN Procedure,” discusses a nonlinear first-order
compartment pharmacokinetic model for theophylline concentration. The data are derived by collapsing and
averaging the subject-specific data from Pinheiro and Bates (1995) in a particular—yet unimportant—way
that leads to two groups for comparisons. The following DATA step creates these data:

data theop;
input time dose conc @@;
if (dose = 4) then group=1; else group=2;
datalines;

0.00 4 0.1633 0.25 4 2.045
0.27 4 4.4 0.30 4 7.37
0.35 4 1.89 0.37 4 2.89
0.50 4 3.96 0.57 4 6.57
0.58 4 6.9 0.60 4 4.6
0.63 4 9.03 0.77 4 5.22
1.00 4 7.82 1.02 4 7.305
1.05 4 7.14 1.07 4 8.6
1.12 4 10.5 2.00 4 9.72
2.02 4 7.93 2.05 4 7.83
2.13 4 8.38 3.50 4 7.54
3.52 4 9.75 3.53 4 5.66
3.55 4 10.21 3.62 4 7.5
3.82 4 8.58 5.02 4 6.275
5.05 4 9.18 5.07 4 8.57
5.08 4 6.2 5.10 4 8.36
7.02 4 5.78 7.03 4 7.47
7.07 4 5.945 7.08 4 8.02
7.17 4 4.24 8.80 4 4.11
9.00 4 4.9 9.02 4 5.33
9.03 4 6.11 9.05 4 6.89
9.38 4 7.14 11.60 4 3.16

11.98 4 4.19 12.05 4 4.57
12.10 4 5.68 12.12 4 5.94
12.15 4 3.7 23.70 4 2.42
24.15 4 1.17 24.17 4 1.05
24.37 4 3.28 24.43 4 1.12
24.65 4 1.15 0.00 5 0.025
0.25 5 2.92 0.27 5 1.505
0.30 5 2.02 0.50 5 4.795
0.52 5 5.53 0.58 5 3.08
0.98 5 7.655 1.00 5 9.855



3250 F Chapter 41: The GLIMMIX Procedure

1.02 5 5.02 1.15 5 6.44
1.92 5 8.33 1.98 5 6.81
2.02 5 7.8233 2.03 5 6.32
3.48 5 7.09 3.50 5 7.795
3.53 5 6.59 3.57 5 5.53
3.60 5 5.87 5.00 5 5.8
5.02 5 6.2867 5.05 5 5.88
6.98 5 5.25 7.00 5 4.02
7.02 5 7.09 7.03 5 4.925
7.15 5 4.73 9.00 5 4.47
9.03 5 3.62 9.07 5 4.57
9.10 5 5.9 9.22 5 3.46

12.00 5 3.69 12.05 5 3.53
12.10 5 2.89 12.12 5 2.69
23.85 5 0.92 24.08 5 0.86
24.12 5 1.25 24.22 5 1.15
24.30 5 0.9 24.35 5 1.57
;

In terms of two fixed treatment groups, the nonlinear model for these data can be written as

Cit D
Dkeikai

Cli .kai � kei /
Œexp.�kei t / � exp.�kai t /�C �it

where Cit is the observed concentration in group i at time t, D is the dose of theophylline, kei is the
elimination rate constant in group i, kai is the absorption rate in group i, Cli is the clearance in group i, and
�it denotes the model error. Because the rates and the clearance must be positive, you can parameterize the
model in terms of log rates and the log clearance:

Cli D expfˇ1ig
kai D expfˇ2ig
kei D expfˇ3ig

In this parameterization the model contains six parameters, and the rates and clearance vary by group. The
following PROC NLIN statements fit the model and obtain the group-specific parameter estimates:

proc nlin data=theop outest=cov;
parms beta1_1=-3.22 beta2_1=0.47 beta3_1=-2.45

beta1_2=-3.22 beta2_2=0.47 beta3_2=-2.45;
if (group=1) then do;

cl = exp(beta1_1);
ka = exp(beta2_1);
ke = exp(beta3_1);

end; else do;
cl = exp(beta1_2);
ka = exp(beta2_2);
ke = exp(beta3_2);

end;
mean = dose*ke*ka*(exp(-ke*time)-exp(-ka*time))/cl/(ka-ke);
model conc = mean;
ods output ParameterEstimates=ests;

run;
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The conditional programming statements determine the clearance, elimination, and absorption rates depend-
ing on the value of the group variable. The OUTEST= option in the PROC NLIN statement saves estimates
and their covariance matrix to the data set cov. The ODS OUTPUT statement saves the “Parameter Esti-
mates” table to the data set ests.

Output 41.17.1 displays the analysis of variance table and the parameter estimates from this NLIN run.
Note that the confidence levels in the “Parameter Estimates” table are based on 92 degrees of freedom,
corresponding to the residual degrees of freedom in the analysis of variance table.

Output 41.17.1 Analysis of Variance and Parameter Estimates for Nonlinear Model

The NLIN Procedure

NOTE: An intercept was not specified for this model.

Sum of Mean Approx
Source DF Squares Square F Value Pr > F

Model 6 3247.9 541.3 358.56 <.0001
Error 92 138.9 1.5097
Uncorrected Total 98 3386.8

Approx Approximate 95% Confidence
Parameter Estimate Std Error Limits

beta1_1 -3.5671 0.0864 -3.7387 -3.3956
beta2_1 0.4421 0.1349 0.1742 0.7101
beta3_1 -2.6230 0.1265 -2.8742 -2.3718
beta1_2 -3.0111 0.1061 -3.2219 -2.8003
beta2_2 0.3977 0.1987 0.00305 0.7924
beta3_2 -2.4442 0.1618 -2.7655 -2.1229

The following DATA step extracts the part of the cov data set that contains the covariance matrix of the
parameter estimates in Output 41.17.1 and renames the variables as Col1–Col6. Output 41.17.2 shows the
result of the DATA step.

data covb;
set cov(where=(_type_='COVB'));
rename beta1_1=col1 beta2_1=col2 beta3_1=col3

beta1_2=col4 beta2_2=col5 beta3_2=col6;
row = _n_;
Parm = 1;
keep parm row beta:;

run;

proc print data=covb;
run;
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Output 41.17.2 Covariance Matrix of NLIN Parameter Estimates

Obs col1 col2 col3 col4 col5 col6 row Parm

1 0.007462 -0.005222 0.010234 0.000000 0.000000 0.000000 1 1
2 -0.005222 0.018197 -0.010590 0.000000 0.000000 0.000000 2 1
3 0.010234 -0.010590 0.015999 0.000000 0.000000 0.000000 3 1
4 0.000000 0.000000 0.000000 0.011261 -0.009096 0.015785 4 1
5 0.000000 0.000000 0.000000 -0.009096 0.039487 -0.019996 5 1
6 0.000000 0.000000 0.000000 0.015785 -0.019996 0.026172 6 1

The reason for this transformation of the data is to use the resulting data set to define a covariance structure
in PROC GLIMMIX. The following statements reconstitute a model in which the parameter estimates from
PROC NLIN are the observations and in which the covariance matrix of the “observations” matches the
covariance matrix of the NLIN parameter estimates:

proc glimmix data=ests order=data;
class Parameter;
model Estimate = Parameter / noint df=92 s;
random _residual_ / type=lin(1) ldata=covb v;
parms (1) / noiter;
lsmeans parameter / cl;
lsmestimate Parameter

'beta1 eq. across groups' 1 0 0 -1,
'beta2 eq. across groups' 0 1 0 0 -1,
'beta3 eq. across groups' 0 0 1 0 0 -1 /
adjust=bon stepdown ftest(label='Homogeneity');

run;

In other words, you are using PROC GLIMMIX to set up a linear statistical model

Y D I˛C �
� � .0;A/

where the covariance matrix A is given by

A D

26666664

0:007 �0:005 0:010 0 0 0

�0:005 0:018 �0:011 0 0 0

0:010 �0:011 0:016 0 0 0

0 0 0 0:011 �0:009 0:016

0 0 0 �0:009 0:039 �0:019

0 0 0 0:016 �0:019 0:026

37777775
The generalized least squares estimate for ˛ in this saturated model reproduces the observations:

b̨D �I0A�1I��1 I0A�1y

D
�
A�1

��1
A�1y

D y
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The ORDER=DATA option in the PROC GLIMMIX statement requests that the sort order of the Parameter
variable be identical to the order in which it appeared in the “Parameter Estimates” table of the NLIN
procedure (Output 41.17.1). The MODEL statement uses the Estimate and Parameter variables from that
table to form a model in which the X matrix is the identity; hence the NOINT option. The DF=92 option sets
the degrees of freedom equal to the value used in the NLIN procedure. The RANDOM statement specifies
a linear covariance structure with a single component and supplies the values for the structure through the
LDATA= data set. This structure models the covariance matrix as VarŒY� D �A, where the A matrix is
given previously. Essentially, the TYPE=LIN(1) structure forces an unstructured covariance matrix onto the
data. To make this work, the parameter � is held fixed at 1 in the PARMS statement.

Output 41.17.3 displays the parameter estimates and least squares means for this model. Note that estimates
and least squares means are identical, since the X matrix is the identity. Also, the confidence limits agree
with the values reported by PROC NLIN (see Output 41.17.1).

Output 41.17.3 Parameter Estimates and LS-Means from Summary Data

The GLIMMIX Procedure

Solutions for Fixed Effects

Standard
Effect Parameter Estimate Error DF t Value Pr > |t|

Parameter beta1_1 -3.5671 0.08638 92 -41.29 <.0001
Parameter beta2_1 0.4421 0.1349 92 3.28 0.0015
Parameter beta3_1 -2.6230 0.1265 92 -20.74 <.0001
Parameter beta1_2 -3.0111 0.1061 92 -28.37 <.0001
Parameter beta2_2 0.3977 0.1987 92 2.00 0.0483
Parameter beta3_2 -2.4442 0.1618 92 -15.11 <.0001

Parameter Least Squares Means

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha

beta1_1 -3.5671 0.08638 92 -41.29 <.0001 0.05
beta2_1 0.4421 0.1349 92 3.28 0.0015 0.05
beta3_1 -2.6230 0.1265 92 -20.74 <.0001 0.05
beta1_2 -3.0111 0.1061 92 -28.37 <.0001 0.05
beta2_2 0.3977 0.1987 92 2.00 0.0483 0.05
beta3_2 -2.4442 0.1618 92 -15.11 <.0001 0.05

Parameter Least Squares Means

Parameter Lower Upper

beta1_1 -3.7387 -3.3956
beta2_1 0.1742 0.7101
beta3_1 -2.8742 -2.3718
beta1_2 -3.2219 -2.8003
beta2_2 0.003050 0.7924
beta3_2 -2.7655 -2.1229
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The (marginal) covariance matrix of the data is shown in Output 41.17.4 to confirm that it matches the A
matrix given earlier.

Output 41.17.4 R-Side Covariance Matrix

Estimated V Matrix for Subject 1

Row Col1 Col2 Col3 Col4 Col5 Col6

1 0.007462 -0.00522 0.01023
2 -0.00522 0.01820 -0.01059
3 0.01023 -0.01059 0.01600
4 0.01126 -0.00910 0.01579
5 -0.00910 0.03949 -0.02000
6 0.01579 -0.02000 0.02617

The LSMESTIMATE statement specifies three linear functions. These set equal the ˇ parameters from the
groups. The step-down Bonferroni adjustment requests a multiplicity adjustment for the family of three
tests. The FTEST option requests a joint test of the three estimable functions; it is a global test of parameter
homogeneity across groups.

Output 41.17.5 displays the result from the LSMESTIMATE statement. The joint test is highly significant
(F = 30.52, p < 0.0001). From the p-values associated with the individual rows of the estimates, you can
see that the lack of homogeneity is due to group differences for ˇ1, the log clearance.

Output 41.17.5 Test of Parameter Homogeneity across Groups

Least Squares Means Estimates
Adjustment for Multiplicity: Holm

Standard
Effect Label Estimate Error DF t Value Pr > |t|

Parameter beta1 eq. across groups -0.5560 0.1368 92 -4.06 0.0001
Parameter beta2 eq. across groups 0.04443 0.2402 92 0.18 0.8537
Parameter beta3 eq. across groups -0.1788 0.2054 92 -0.87 0.3862

Least Squares Means Estimates
Adjustment for Multiplicity: Holm

Effect Label Adj P

Parameter beta1 eq. across groups 0.0003
Parameter beta2 eq. across groups 0.8537
Parameter beta3 eq. across groups 0.7725

F Test for Least Squares Means Estimates

Num Den
Label DF DF F Value Pr > F

Homogeneity 3 92 30.52 <.0001
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An alternative method to set up this model is given by the following statements, where the data set pdata
contains the covariance parameters:

random _residual_ / type=un;
parms / pdata=pdata noiter

The following DATA step creates an appropriate PDATA= data set from the data set covb constructed earlier:

data pdata;
set covb;
array col{6};
do i=1 to _n_;

estimate = col{i};
output;

end;
keep estimate;

run;
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estimates (GLIMMIX), 2972
exponentiated (GLIMMIX), 2994
fixed effects (GLIMMIX), 3000
in mean plot (GLIMMIX), 2948, 2985
inversely linked (GLIMMIX), 2982, 3112
least squares mean estimate (GLIMMIX), 2991
least squares mean estimate, lower (GLIMMIX),

2995
least squares mean estimate, upper (GLIMMIX),

2997
least squares means (GLIMMIX), 2927, 2978,

2981



least squares means estimates (GLIMMIX), 2993
likelihood-based, details (GLIMMIX), 3073
odds ratios (GLIMMIX), 2943, 2952, 3008, 3091
profile likelihood (GLIMMIX), 2965
random-effects solution (GLIMMIX), 3023
truncation (GLIMMIX), 3112
vs. prediction limits (GLIMMIX), 3111
Wald (GLIMMIX), 2966

constraints
boundary (GLIMMIX), 3017, 3021

constructed effects
GLIMMIX procedure, 2969, 3246

Containment method
GLIMMIX procedure, 3075

contrast-specification
GLIMMIX procedure, 2957, 2969

contrasts
GLIMMIX procedure, 2957

control plot
GLIMMIX procedure, 3122

convergence criterion
GLIMMIX procedure, 2930, 2939, 2945, 3103,

3109, 3138, 3183
MIXED procedure, 3103

convergence status
GLIMMIX procedure, 3109

covariance
parameters (GLIMMIX), 2920, 2925, 2930
parameters, confidence interval (GLIMMIX),

2961
parameters, testing (GLIMMIX), 2961

covariance parameter estimates
GLIMMIX procedure, 2937, 2945, 3111

covariance structure
anisotropic power (GLIMMIX), 3036
ante-dependence (GLIMMIX), 3028
autoregressive (GLIMMIX), 2919, 3028
autoregressive moving-average (GLIMMIX),

3029
banded (GLIMMIX), 3037
Cholesky type (GLIMMIX), 3029
compound symmetry (GLIMMIX), 3030
equi-correlation (GLIMMIX), 3030
examples (GLIMMIX), 3038
exponential (GLIMMIX), 3035
factor-analytic (GLIMMIX), 3031
G-side (GLIMMIX), 2919, 2962, 3028
Gaussian (GLIMMIX), 3036
general (GLIMMIX), 2917
general linear (GLIMMIX), 3032
heterogeneous autoregressive (GLIMMIX), 3029
heterogeneous compound symmetry

(GLIMMIX), 3031
heterogeneous Toeplitz (GLIMMIX), 3037

Huynh-Feldt (GLIMMIX), 3032
Matérn (GLIMMIX), 3036
misspecified (GLIMMIX), 2917
parameter reordering (GLIMMIX), 3017
penalized B-spline (GLIMMIX), 3024, 3026,

3033
positive (semi-)definite, 3029
power (GLIMMIX), 3036
R-side (GLIMMIX), 2919, 2962, 3017, 3021,

3027, 3028
R-side with profiled scale (GLIMMIX), 3017
radial smooth (GLIMMIX), 3024, 3034
simple (GLIMMIX), 3035
spatial (GLIMMIX), 3023, 3035
spherical (GLIMMIX), 3037
Toeplitz (GLIMMIX), 3037
unstructured (GLIMMIX), 3037
unstructured, correlation (GLIMMIX), 3038
variance components (GLIMMIX), 3038
with second derivatives (GLIMMIX), 3077
working, independence (GLIMMIX), 2933

crossed effects
GLIMMIX procedure, 3095

default estimation technique
GLIMMIX procedure, 3106

default output
GLIMMIX procedure, 3107

degrees of freedom
chi-square mixture (GLIMMIX), 2967
GLIMMIX procedure, 2959, 2960, 2970, 2972,

2981, 2993, 3001, 3075
infinite (GLIMMIX), 2971, 2972, 2981, 2993
method (GLIMMIX), 3001

degrees of freedom method
GLIMMIX procedure, 3075

diagnostic plots
GLIMMIX procedure, 3117

diffogram
GLIMMIX procedure, 3122

dimension information
GLIMMIX procedure, 3108

dispersion parameter
GLIMMIX procedure, 3050

doubly iterative algorithm
GLIMMIX procedure, 3104

Dunnett’s adjustment
GLIMMIX procedure, 2979

EBE
GLIMMIX procedure, 3027, 3111

EBLUP
GLIMMIX procedure, 3027

effect



name length (GLIMMIX), 2942
empirical Bayes estimates

GLIMMIX procedure, 2938, 3027, 3111
empirical Bayes estimation

GLIMMIX procedure, 2938
empirical estimator

GLIMMIX procedure, 2931, 3078, 3080
estimability

GLIMMIX procedure, 2958, 2959
estimates

GLIMMIX procedure, 2969
multiple comparison adjustment (GLIMMIX),

2970, 2971
estimation methods

GLIMMIX procedure, 2936
examples, GLIMMIX

k-d tree information, 3086
_LINP_, 3044–3046
_LOGL_, 3236
_MU_, 3045, 3046
_VARIANCE_, 3046, 3169
adding computed variables to output data set,

2976
analysis of means, ANOM, 3133
analysis of summary data, 3252
anom plot, 2984
anom plots, 3133
binary data, 3173
binary data, GLMM, 3148
binary data, pseudo-likelihood, 3148
binary data, sort order, 2944
binomial data, 2923
binomial data, GLM, 3136
binomial data, GLMM, 3140
binomial data, overdispersed, 3165
binomial data, spatial covariance, 3144
bivariate data; Poisson, binary, 3175
blotch incidence data, 3164
box plots, 3120
bucket size in k-d tree, 3086
central t distribution, 3005
Cholesky covariance structure, 3193
collection effect, 3096
computed variables, 3156, 3181
constructed random effect, 3247
containment hierarchy, 2938, 3083
contrast, among covariance parameters, 2964,

2965, 3201
contrast, differences of splines, 3100
contrast, nonpositional syntax, 2958, 3098, 3243
contrast, positional syntax, 2958, 3098
contrast, with groups, 2960
contrast, with spline effects, 3099
control plot, 2984, 3130

covariance structure, 3038
covariates in LS-mean construction, 2980
COVTEST statement, 2967
COVTEST with keywords, 2963
COVTEST with no restrictions, 3071
COVTEST with specified values, 2964
cow weight data, 3179
diallel experiment, 3247
diffogram, 2985, 3126, 3128, 3152
diffplot, 2985
empirical Bayes estimates, 3213
epileptic seizure data, 3219
equivalent models, TYPE=VC, 3082
equivalent models, with and without subject,

3082
estimate, multi-row, 2972
estimate, with groups, 2972
estimate, with varied divisors, 2972
ferrite cores data, 3191
FIRSTORDER option for Kenward-Roger

method, 3196
foot shape data, 3212
FREQ statement, 3213
G-side spatial covariance, 3023
GEE-type model, 2933, 3068, 3222
generalized logit, 2959, 2971
generalized logit with random effects, 3101
generalized Poisson distribution, 3236
getting started, 2921
GLM mode, 3067
GLMM mode, 3068
graphics, anom plots, 3133
graphics, box plots, 3120
graphics, control plot, 3130
graphics, custom template, 3160
graphics, diffogram, 3126, 3128, 3152
graphics, mean plots, 3123
graphics, Pearson residual panel, 3168
graphics, predicted profiles, 3185
graphics, residual panel, 3117
graphics, studentized residual panel, 3159
group option in contrast, 2960
group option in estimate, 2972
group-specific smoothing, 3187
grouped analysis, 3213
groups in RANDOM statement, 2962, 3198
herniorrhaphy data, 3172
Hessian fly data, 3135
holding covariance parameters fixed, 3017
homogeneity of covariance parameters, 2962,

2964, 3198
identity model, 3252
infinite degrees of freedom, 3220
inverse linking, 2927, 2995



isotonic contrast, 3191
joint model (DIST=BYOBS), 3004
joint model, independent, 3175
joint model, marginal correlation, 3177
joint model, shared random effect, 3176
Kenward-Roger method, 3193
knot construction, k-d tree, 3025, 3086, 3181
knot construction, equal, 3025
knot construction, optimization, 3026
Laplace approximation, 3061, 3065, 3229
LDATA= option, 3032
least squares mean estimate, 2990, 3191
least squares mean estimate, multi-row, 2993
least squares mean estimate, with varied divisors,

2993
least squares means, 2927
least squares means, AT option, 2980
least squares means, covariate, 2980
least squares means, differences against control,

2982
least squares means, slice, 2987
least squares means, slice differences, 2987
linear combination of LS-means, 2990
linear covariance structure, 3032, 3252
logistic model with random effects, binomial

data, 3140
logistic model, binomial data, 3136
logistic regression with random intercepts, 2921
logistic regression, binary data, 3091, 3173
logistic regression, binomial data, 3105
marginal variance matrix, 3040
mean plot, sliced interaction, 2986
mean plot, three-way, 2986
mean plots, 3123
MIVQUE0 estimates, 3019
multicenter clinical trial, 3223
multimember effect, 3096, 3247
multinomial data, 2959, 2971, 3101, 3213, 3229
multiple local minima, 3210
multiple plot requests, 2950
multiplicity adjustment, 3191, 3225, 3229, 3245
multivariate distributions, 3004
multivariate normal model, 3198
nesting v. crossing, 3084
NLIN procedure, 3250
NLOPTIONS statement, 3181
NOFIT option, 3086
NOITER option for covariance parameters, 3018
nonlinear regression, 3250
NOPROFILE option, 3206
odds ratio, 3008, 3092
odds ratio, all pairwise differences, 3009, 3093
odds ratio, with interactions, 3008, 3093
odds ratio, with reference value, 3009, 3093

odds ratio, with specified units, 3009, 3093
ordinal data, 3213, 3229
OUTDESIGN option, 3241, 3247
output statistics, 3012, 3044, 3156, 3181, 3241
overdispersion, 2920, 2933, 3021, 3067, 3165
parallel shifted smooths, 3188
Pearson residual panel, 3168
penalized B-spline, 3033
Poisson model with offset, 3156, 3220
Poisson model with random effects, 3234
Poisson regression, 3174
Pothoff-Roy repeated measures data, 3192
proportional odds model with random effect,

3213, 3229
quadrature approximation, 3063, 3213, 3234
quasi-likelihood, 3169
R-side covariance structure, 3193, 3222
R-side covariance, binomial data, 3144
radial smooth, with parallel shifts, 3188
radial smoothing, 3086, 3181, 3206
radial smoothing, group-specific, 3187
REPEATED in MIXED vs RANDOM in

GLIMMIX, 3102
residual panel, 3117
row-wise adjustment of LS-mean differences,

2978
salamander data, 3146
Satterthwaite method, 2978
saturated model, 3252
Scottish lip cancer data, 3155
SGPANEL procedure, 3185
SGPLOT procedure, 3209, 3210, 3217, 3240,

3242
SGRENDER procedure, 3160
simple differences, 2987, 3152
simple differences with control, 2988
simulated p-values, 3225, 3229, 3245
slice F test, 2987
slice differences, 2987, 3152
slice differences with control, 2988
space-filling design, 3026
spatial covariance, binomial data, 3144
specifying lower bounds, 3018
specifying values for degrees of freedom, 3001
spline differences, 3245
spline effect, 3097, 3241
splines in interactions, 3245
standardized mortality rate, 3156
starting values, 3210
starting values and BY groups, 3020
starting values from data set, 3020
step-down p-values, 3225, 3229, 3245
studentized maximum modulus, 2978
studentized residual panel, 3159



subject processing, 2938, 3082
subject processing, containment, 3083
subject processing, crossed effects, 3083
subject processing, nested effects, 3083
subject-processing, asymptotics, 3061
syntax, differences to MIXED, 3102, 3103
test for independence, 3216
test for Poisson distribution, 3236
testing covariance parameters, 2963, 3198, 3201,

3206
theophylline data, 3249
TYPE=CS and TYPE=VC equivalence, 3030
user-defined log-likelihood function, 3236
user-defined variance function, 3065
user-specified link function, 3045, 3046
user-specified variance function, 3046, 3169
working independence, 2933, 3068

expansion locus
theory (GLIMMIX), 3058

exponential covariance structure
GLIMMIX procedure, 3035

exponential distribution
GLIMMIX procedure, 3003

factor-analytic structure
GLIMMIX procedure, 3031

finite differences
theory (GLIMMIX), 3064

Fisher’s scoring method
GLIMMIX procedure, 2930, 2953

fit statistics
GLIMMIX procedure, 3110

fitting information
GLIMMIX procedure, 3110

fixed effects
GLIMMIX procedure, 2918

frequency variable
GLIMMIX procedure, 2975

G matrix
GLIMMIX procedure, 3021, 3023

G-side random effect
GLIMMIX procedure, 2919

gamma distribution
GLIMMIX procedure, 3003

Gaussian covariance structure
GLIMMIX procedure, 3036

Gaussian distribution
GLIMMIX procedure, 3003

GEE, see also generalized estimating equations
general linear covariance structure

GLIMMIX procedure, 3032
generalized estimating equations

compound symmetry (GLIMMIX), 3222

working independence (GLIMMIX), 2933, 3068
generalized linear mixed model, see also GLIMMIX

procedure
generalized linear mixed model (GLIMMIX)

least squares means, 2990
theory, 3052

generalized linear model, see also GLIMMIX
procedure

generalized linear model (GLIMMIX)
theory, 3047

generalized logit
example (GLIMMIX), 2959, 2971

generalized Poisson distribution
GLIMMIX procedure, 3232

geometric distribution
GLIMMIX procedure, 3003

GLIMMIX procedure
adaptive Gaussian quadrature, 2938
Akaike’s information criterion, 2934
Akaike’s information criterion (finite sample

corrected version), 2934
alpha level, 2965, 2971, 2980, 2992, 3000, 3015,

3022
anisotropic power covariance structure, 3036
anisotropic spatial power structure, 3036
ANOM adjustment, 2979
anom plot, 3122
ANTE(1) structure, 3028
ante-dependence structure, 3028
AR(1) structure, 3028
asymptotic covariance, 2930, 2934
automatic variables, 2975, 3044
autoregressive moving-average structure, 3029
autoregressive structure, 3028
banded Toeplitz structure, 3037
Bernoulli distribution, 3003
beta distribution, 3003
Between-Within method, 3075
bias of estimates, 3066
binary distribution, 3003
binomial distribution, 3003
BLUP, 3027, 3044, 3045, 3111
Bonferroni adjustment, 2979
boundary constraints, 3017, 3021
box plots, 3117
BYLEVEL processing of LSMEANS, 2981,

2983, 2992
centering, 3008
chi-square mixture, 2967
chi-square test, 2960, 2993, 3000
Cholesky covariance structure, 3029
Cholesky method, 2931
Cholesky root, 3029, 3031
class level, 2942, 3107



comparing splines, 3240
comparison with the MIXED procedure, 3101
compound symmetry structure, 3030
computed variables, 2975
confidence interval, 2973, 2995, 3022
confidence limits, 2972, 2981, 2993, 3000, 3023
confidence limits, covariance parameters, 2965
constrained covariance parameters, 2968
constructed effects, 2969, 3246
Containment method, 3075
continuous effects, 3028
contrast-specification, 2957, 2969
contrasts, 2957
control plot, 3122
convergence criterion, 2930, 2939, 2945, 3103,

3109, 3138, 3183
convergence status, 3109
correlations of least squares means, 2981
correlations of least squares means contrasts,

2993
covariance parameter estimates, 2937, 3111
covariance parameters, 2920
covariance structure, 3028, 3038
covariances of least squares means, 2981
covariances of least squares means contrasts,

2993
covariate values for LSMEANS, 2980, 2992
crossed effects, 3095
default estimation technique, 3106
default output, 3107
default variance function, 3043
degrees of freedom, 2959, 2960, 2967, 2969,

2970, 2972, 2977, 2978, 2981, 2991, 2993,
3001, 3010, 3075, 3096

degrees of freedom method, 3075
diagnostic plots, 3117
diffogram, 2985, 3122, 3126, 3128, 3152
dimension information, 3108
dispersion parameter, 3050
doubly iterative algorithm, 3104
Dunnett’s adjustment, 2979
EBE, 3027, 3111
EBLUP, 3027
effect name length, 2942
empirical Bayes estimates, 2938, 3027, 3111
empirical Bayes estimation, 2938
empirical estimator, 3080
estimability, 2958, 2959, 2961, 2974, 2976,

3010, 3096
estimated-likelihood interval, 2965
estimates, 2969
estimation methods, 2936
estimation modes, 3067
examples, see also examples, GLIMMIX, 3135

expansion locus, 3058
exponential covariance structure, 3035
exponential distribution, 3003
factor-analytic structure, 3031
finite differences, 3064
Fisher’s scoring method, 2930, 2953
fit statistics, 3110
fitting information, 3110
fixed effects, 2918
fixed-effects parameters, 3010
G matrix, 3021, 3023
G-side random effect, 2919
gamma distribution, 3003
Gaussian covariance structure, 3036
Gaussian distribution, 3003
general linear covariance structure, 3032
generalized linear mixed model theory, 3052
generalized linear model theory, 3047
generalized Poisson distribution, 3232
geometric distribution, 3003
GLM mode, 2933, 3050, 3067, 3068
GLMM mode, 2933, 3067, 3068
grid search, 3016
group effect, 3023
Hannan-Quinn information criterion, 2934
Hessian matrix, 2930, 2934
heterogeneous AR(1) structure, 3029
heterogeneous autoregressive structure, 3029
heterogeneous compound symmetry structure,

3031
heterogeneous Toeplitz structure, 3037
Hsu’s adjustment, 2979
Huynh-Feldt covariance structure, 3032
infinite degrees of freedom, 2960, 2971, 2972,

2981, 2993
information criteria, 2934
initial values, 3016
input data sets, 2931
integral approximation, 3052
interaction effects, 3095
intercept, 3095
intercept random effect, 3021
introductory example, 2921
inverse Gaussian distribution, 3003
iteration details, 2936
iteration history, 3109
iterations, 3109
Kackar-Harville-Jeske adjusted estimator, 3080
Kenward-Roger method, 3077
knot selection, 3085
KR adjusted estimator, 3080
L matrices, 2957, 2976
lag functionality, 3043
Laplace approximation, 2936, 2937, 3059



least squares means, 2976, 2981, 2988
likelihood ratio test, 2961, 3068
linear covariance structure, 3032
linearization, 3052, 3054
link function, 2918, 3006
log-normal distribution, 3003
marginal residuals, 3015
Matérn covariance structure, 3036
maximum likelihood, 2936, 3106
missing level combinations, 3096
MIVQUE0 estimation, 3019, 3108
mixed model smoothing, 3024, 3026, 3033,

3034, 3084
model information, 3107
multimember effect, 3246
multimember example, 3246
multinomial distribution, 3003
multiple comparisons of estimates, 2970, 2971
multiple comparisons of least squares means,

2978, 2981, 2988, 2991, 2992
multiplicity adjustment, 2971, 2974, 2978, 2989,

2991, 2992, 2996
negative binomial distribution, 3003
Nelson’s adjustment, 2979
nested effects, 3095
non-full-rank parameterization, 3096
non-positional syntax, 2958, 3097, 3240
normal distribution, 3003
notation, 2918
number of observations, 3107
numerical integration, 3062
odds estimation, 3090
odds ratio estimation, 3090
odds ratios, 2943
ODS graph names, 3115
ODS Graphics, 2946, 3115
ODS table names, 3113
offset, 3010, 3044, 3156, 3157, 3220
optimization, 3011
optimization information, 3108
output statistics, 3111
overdispersion, 3232
P-spline, 3033
parameterization, 3095
penalized B-spline, 3033
Poisson distribution, 3003
Poisson mixture, 3232
population average, 3058
positive definiteness, 3029
power covariance structure, 3036
profile-likelihood interval, 2965
profiling residual variance, 2943, 2953
programming statements, 3042
pseudo-likelihood, 2936, 3106

quadrature approximation, 2936, 3062
quasi-likelihood, 3106
R-side random effect, 2919, 3027
radial smoother structure, 3034
radial smoothing, 3024, 3034, 3084
random effects, 2918, 3021
random-effects parameter, 3027
reference category, 3100
residual effect, 3021
residual likelihood, 2936
residual maximum likelihood, 3106
residual plots, 3117
response level ordering, 2999, 3100
response profile, 3100, 3108
response variable options, 2999
restricted maximum likelihood, 3106
sandwich estimator, 3080
Satterthwaite method, 3075
scale parameter, 2919–2921, 2935, 2943, 2953,

2966, 3016, 3017, 3020, 3043, 3047, 3050,
3051, 3055, 3057, 3059, 3062, 3072, 3104,
3108, 3110, 3148, 3165, 3169, 3183, 3186,
3215, 3233

Schwarz’s Bayesian information criterion, 2934
scoring, 2930
Sidak’s adjustment, 2979
simple covariance matrix, 3035
simple effects, 2987
simple effects differences, 2987
simulation-based adjustment, 2979
singly iterative algorithm, 3104
spatial covariance structure, 3035
spatial exponential structure, 3035
spatial Gaussian structure, 3036
spatial Matérn structure, 3036
spatial power structure, 3036
spatial spherical structure, 3037
spherical covariance structure, 3037
spline comparisons, 3240
spline smoothing, 3033, 3034
standard error adjustment, 2931
statistical graphics, 3115
subject effect, 3028
subject processing, 3082
subject-specific, 3058
t distribution, 3003
table names, 3113
test-specification for covariance parameters,

2962
testing covariance parameters, 2961, 3068
tests of fixed effects, 3111
thin plate spline (approx.), 3084
Toeplitz structure, 3037
Tukey’s adjustment, 2979



Type I testing, 3006
Type II testing, 3006
Type III testing, 3006
unstructured covariance, 3037
unstructured covariance matrix, 3031
user-defined link function, 3043
V matrix, 3040
Wald test, 3111
Wald tests of covariance parameters, 2969
weighting, 3041

GLIMMIX procedure
ordering of effects, 2944

GLM, see also GLIMMIX procedure
GLMM, see also GLIMMIX procedure
group effect

GLIMMIX procedure, 3023

Hannan-Quinn information criterion
GLIMMIX procedure, 2934

Hessian matrix
GLIMMIX procedure, 2930, 2934

heterogeneous AR(1) structure
GLIMMIX procedure, 3029

heterogeneous autoregressive structure
GLIMMIX procedure, 3029

heterogeneous compound symmetry structure
GLIMMIX procedure, 3031

heterogeneous Toeplitz structure
GLIMMIX procedure, 3037

Hsu’s adjustment
GLIMMIX procedure, 2979

Huynh-Feldt
stucture (GLIMMIX), 3032

infinite degrees of freedom
GLIMMIX procedure, 2960, 2972, 2981, 2993

information criteria
GLIMMIX procedure, 2934

initial values
GLIMMIX procedure, 3016

integral approximation
theory (GLIMMIX), 3052

interaction effects
GLIMMIX procedure, 3095

intercept
GLIMMIX procedure, 3095

inverse Gaussian distribution
GLIMMIX procedure, 3003

iteration details
GLIMMIX procedure, 2936

iteration history
GLIMMIX procedure, 3109

iterations
history (GLIMMIX), 3109

Kenward-Roger method
GLIMMIX procedure, 3077

knot selection
GLIMMIX procedure, 3085

L matrices
GLIMMIX procedure, 2957, 2976
mixed model (GLIMMIX), 2957, 2976

lag functionality
GLIMMIX procedure, 3043

Laplace approximation
GLIMMIX procedure, 2936, 2937
theory (GLIMMIX), 3059

least squares means
Bonferroni adjustment (GLIMMIX), 2979
BYLEVEL processing (GLIMMIX), 2981,

2983, 2992
comparison types (GLIMMIX), 2981, 2988
covariate values (GLIMMIX), 2980, 2992
Dunnett’s adjustment (GLIMMIX), 2979
generalized linear mixed model (GLIMMIX),

2976, 2990
Hsu’s adjustment (GLIMMIX), 2979
multiple comparison adjustment (GLIMMIX),

2978, 2991, 2992
Nelson’s adjustment (GLIMMIX), 2979
observed margins (GLIMMIX), 2983, 2996
Scheffe’s adjustment (GLIMMIX), 2979
Sidak’s adjustment (GLIMMIX), 2979
simple effects (GLIMMIX), 2987
simple effects differences (GLIMMIX), 2987
simulation-based adjustment (GLIMMIX), 2979
Tukey’s adjustment (GLIMMIX), 2979

likelihood ratio test
GLIMMIX procedure, 2961, 3068

linear covariance structure
GLIMMIX procedure, 3032

linearization
theory (GLIMMIX), 3052, 3054

link function
GLIMMIX procedure, 2918, 3006
user-defined (GLIMMIX), 3043

log-normal distribution
GLIMMIX procedure, 3003

marginal residuals
GLIMMIX procedure, 3015

Matérn covariance structure
GLIMMIX procedure, 3036

maximum likelihood
GLIMMIX procedure, 2936, 3106

MBN adjusted sandwich estimators
GLIMMIX procedure, 3079

missing level combinations



GLIMMIX procedure, 3096
MIVQUE0 estimation

GLIMMIX procedure, 3019, 3108
mixed model (GLIMMIX)

parameterization, 3095
mixed model smoothing

GLIMMIX procedure, 3024, 3026, 3033, 3034,
3084

MIXED procedure
comparison with the GLIMMIX procedure, 3101
convergence criterion, 3103

mixture
chi-square (GLIMMIX), 2961, 2967
chi-square, weights (GLIMMIX), 2969
Poisson (GLIMMIX), 3232

model
information (GLIMMIX), 3107

multimember effect
GLIMMIX procedure, 3246

multimember example
GLIMMIX procedure, 3246

multinomial distribution
GLIMMIX procedure, 3003

multiple comparison adjustment (GLIMMIX)
estimates, 2970, 2971
least squares means, 2978, 2991, 2992

multiple comparisons of estimates
GLIMMIX procedure, 2970, 2971

multiple comparisons of least squares means
GLIMMIX procedure, 2978, 2981, 2988, 2991,

2992
multiplicity adjustment

Bonferroni (GLIMMIX), 2978, 2992
Dunnett (GLIMMIX), 2978
estimates (GLIMMIX), 2971
GLIMMIX procedure, 2970
Hsu (GLIMMIX), 2978
least squares means (GLIMMIX), 2978
least squares means estimates (GLIMMIX), 2991
Nelson (GLIMMIX), 2978
row-wise (GLIMMIX), 2970, 2978
Scheffe (GLIMMIX), 2978, 2992
Sidak (GLIMMIX), 2978, 2992
Simulate (GLIMMIX), 2992
simulation-based (GLIMMIX), 2979
step-down p-values (GLIMMIX), 2974, 2989,

2996
T (GLIMMIX), 2992
Tukey (GLIMMIX), 2978

negative binomial distribution
GLIMMIX procedure, 3003

Nelson’s adjustment
GLIMMIX procedure, 2979

nested effects
GLIMMIX procedure, 3095

non-full-rank parameterization
GLIMMIX procedure, 3096

non-positional syntax
GLIMMIX procedure, 2958, 3097, 3240

normal distribution
GLIMMIX procedure, 3003

notation
GLIMMIX procedure, 2918

number of observations
GLIMMIX procedure, 3107

numerical integration
theory (GLIMMIX), 3062

odds estimation
GLIMMIX procedure, 3090

odds ratio estimation
GLIMMIX procedure, 3090

ODS graph names
GLIMMIX procedure, 3115

ODS Graphics
GLIMMIX procedure, 2946, 3115

offset
GLIMMIX procedure, 3010, 3044, 3156, 3157,

3220
optimization

GLIMMIX procedure, 3011
optimization information

GLIMMIX procedure, 3108
options summary

LSMEANS statement, (GLIMMIX), 2977
MODEL statement (GLIMMIX), 2998
PROC GLIMMIX statement, 2929
RANDOM statement (GLIMMIX), 3022

output statistics
GLIMMIX procedure, 3111

overdispersion
GLIMMIX procedure, 3232

P-spline
GLIMMIX procedure, 3033

parameterization
GLIMMIX procedure, 3095
mixed model (GLIMMIX), 3095

penalized B-spline
GLIMMIX procedure, 3033

Poisson distribution
GLIMMIX procedure, 3003

Poisson mixture
GLIMMIX procedure, 3232

positive definiteness
GLIMMIX procedure, 3029

power covariance structure



GLIMMIX procedure, 3036
probability distributions

GLIMMIX procedure, 3003
PROC GLIMMIX procedure

residual variance tolerance, 2953
programming statements

GLIMMIX procedure, 3042
pseudo-likelihood

GLIMMIX procedure, 2936, 3106

quadrature approximation
GLIMMIX procedure, 2936
theory (GLIMMIX), 3062

quasi-likelihood
GLIMMIX procedure, 3106

R-side random effect
GLIMMIX procedure, 2919

radial smoother structure
GLIMMIX procedure, 3034

radial smoothing
GLIMMIX procedure, 3024, 3034, 3084

random effects
GLIMMIX procedure, 2918, 3021

reference category
GLIMMIX procedure, 3100

residual likelihood
GLIMMIX procedure, 2936

residual plots
GLIMMIX procedure, 3117

residual-based sandwich estimators
GLIMMIX procedure, 3078

response level ordering
GLIMMIX procedure, 2999, 3100

response profile
GLIMMIX procedure, 3100, 3108

response variable options
GLIMMIX procedure, 2999

restricted maximum likelihood
GLIMMIX procedure, 3106

reverse response level ordering
GLIMMIX procedure, 2999

sandwich estimator, see also empirical estimator
GLIMMIX procedure, 2931, 3078, 3080

Satterthwaite method
GLIMMIX procedure, 3075

scale parameter
GLIMMIX compared to GENMOD, 3050
GLIMMIX procedure, 2919–2921, 2935, 2943,

2953, 2966, 3016, 3017, 3020, 3043, 3047,
3050, 3051, 3055, 3057, 3059, 3062, 3072,
3104, 3108, 3110, 3148, 3165, 3169, 3183,
3186, 3215, 3233

Schwarz’s Bayesian information criterion

GLIMMIX procedure, 2934
scoring

GLIMMIX procedure, 2930
Sidak’s adjustment

GLIMMIX procedure, 2979
simple covariance matrix

GLIMMIX procedure, 3035
simple effects

GLIMMIX procedure, 2987
simple effects differences

GLIMMIX procedure, 2987
simulation-based adjustment

GLIMMIX procedure, 2979
singly iterative algorithm

GLIMMIX procedure, 3104
spatial covariance structure

GLIMMIX procedure, 3035
spatial exponential structure

GLIMMIX procedure, 3035
spatial Gaussian structure

GLIMMIX procedure, 3036
spatial Matérn structure

GLIMMIX procedure, 3036
spatial power structure

GLIMMIX procedure, 3036
spatial spherical structure

GLIMMIX procedure, 3037
spherical covariance structure

GLIMMIX procedure, 3037
spline comparisons

GLIMMIX procedure, 3240
spline smoothing

GLIMMIX procedure, 3033, 3034
statistical graphics

GLIMMIX procedure, 3115
subject effect

GLIMMIX procedure, 3028
subject processing

GLIMMIX procedure, 3082

t distribution
GLIMMIX procedure, 3003

table names
GLIMMIX procedure, 3113

test-specification for covariance parameters
GLIMMIX procedure, 2962

testing covariance parameters
GLIMMIX procedure, 2961, 3068

tests of fixed effects
GLIMMIX procedure, 3111

theophylline data
examples, GLIMMIX, 3249

thin plate spline (approx.)
GLIMMIX procedure, 3084



Toeplitz structure
GLIMMIX procedure, 3037

Tukey’s adjustment
GLIMMIX procedure, 2979

Type I testing
GLIMMIX procedure, 3006

Type II testing
GLIMMIX procedure, 3006

Type III testing
GLIMMIX procedure, 3006

unstructured covariance
GLIMMIX procedure, 3037

unstructured covariance matrix
GLIMMIX procedure, 3031

V matrix
GLIMMIX procedure, 3040

variance function
GLIMMIX procedure, 3043
user-defined (GLIMMIX), 3043

Wald test
GLIMMIX procedure, 3111

Wald tests of covariance parameters
GLIMMIX procedure, 2969

weighting
GLIMMIX procedure, 3041





Syntax Index

ABSPCONV option
PROC GLIMMIX statement, 2930

ADJDFE= option
ESTIMATE statement (GLIMMIX), 2970
LSMEANS statement (GLIMMIX), 2978
LSMESTIMATE statement (GLIMMIX), 2991

ADJUST= option
ESTIMATE statement (GLIMMIX), 2971
LSMEANS statement (GLIMMIX), 2978
LSMESTIMATE statement (GLIMMIX), 2992

ALLSTATS option
OUTPUT statement (GLIMMIX), 3015

ALPHA= option
ESTIMATE statement (GLIMMIX), 2971
LSMEANS statement (GLIMMIX), 2980
LSMESTIMATE statement (GLIMMIX), 2992
OUTPUT statement (GLIMMIX), 3015
RANDOM statement (GLIMMIX), 3022

ASYCORR option
PROC GLIMMIX statement, 2930

ASYCOV option
PROC GLIMMIX statement, 2930

AT MEANS option
LSMEANS statement (GLIMMIX), 2980
LSMESTIMATE statement (GLIMMIX), 2992

AT option
LSMEANS statement (GLIMMIX), 2980
LSMESTIMATE statement (GLIMMIX), 2992

BUCKET= suboption
RANDOM statement (GLIMMIX), 3024

BY statement
GLIMMIX procedure, 2955

BYCAT option
CONTRAST statement (GLIMMIX), 2959
ESTIMATE statement (GLIMMIX), 2971

BYCATEGORY option
CONTRAST statement (GLIMMIX), 2959
ESTIMATE statement (GLIMMIX), 2971

BYLEVEL option
LSMEANS statement (GLIMMIX), 2981
LSMESTIMATE statement (GLIMMIX), 2992

CHISQ option
CONTRAST statement (GLIMMIX), 2960
LSMESTIMATE statement (GLIMMIX), 2993
MODEL statement (GLIMMIX), 3000

CHOL option
PROC GLIMMIX statement, 2931

CHOLESKY option
PROC GLIMMIX statement, 2931

CL option
COVTEST statement (GLIMMIX), 2965
ESTIMATE statement (GLIMMIX), 2972
LSMEANS statement (GLIMMIX), 2981
LSMESTIMATE statement (GLIMMIX), 2993
MODEL statement (GLIMMIX), 3000
RANDOM statement (GLIMMIX), 3023

CLASS statement
GLIMMIX procedure, 2955

CLASSICAL option
COVTEST statement (GLIMMIX), 2967

CODE statement
GLIMMIX procedure, 2956

CONTRAST statement
GLIMMIX procedure, 2957

CORR option
LSMEANS statement (GLIMMIX), 2981
LSMESTIMATE statement (GLIMMIX), 2993

CORRB option
MODEL statement (GLIMMIX), 3000

COV option
LSMEANS statement (GLIMMIX), 2981
LSMESTIMATE statement (GLIMMIX), 2993

COVB option
MODEL statement (GLIMMIX), 3000

COVBI option
MODEL statement (GLIMMIX), 3001

COVTEST statement
GLIMMIX procedure, 2961

CPSEUDO option
OUTPUT statement (GLIMMIX), 3015

DATA= option
PROC GLIMMIX statement, 2931

DDF= option
MODEL statement (GLIMMIX), 3001

DDFM= option
MODEL statement (GLIMMIX), 3001

DER option
OUTPUT statement (GLIMMIX), 3015

DERIVATIVES option
OUTPUT statement (GLIMMIX), 3015

DESCENDING option
MODEL statement, 2999

DF= option
CONTRAST statement (GLIMMIX), 2960



COVTEST statement (GLIMMIX), 2967
ESTIMATE statement (GLIMMIX), 2972
LSMEANS statement (GLIMMIX), 2981
LSMESTIMATE statement (GLIMMIX), 2993
MODEL statement (GLIMMIX), 3001

DIFF option
LSMEANS statement (GLIMMIX), 2981

DIST= option
MODEL statement (GLIMMIX), 3003

DISTRIBUTION= option
MODEL statement (GLIMMIX), 3003

DIVISOR= option
ESTIMATE statement (GLIMMIX), 2972
LSMESTIMATE statement (GLIMMIX), 2993

E option
CONTRAST statement (GLIMMIX), 2960
ESTIMATE statement (GLIMMIX), 2972
LSMEANS statement (GLIMMIX), 2982
LSMESTIMATE statement (GLIMMIX), 2993
MODEL statement (GLIMMIX), 3006

E1 option
MODEL statement (GLIMMIX), 3006

E2 option
MODEL statement (GLIMMIX), 3006

E3 option
MODEL statement (GLIMMIX), 3006

EFFECT statement
GLIMMIX procedure, 2969

ELSM option
LSMESTIMATE statement (GLIMMIX), 2993

EMPIRICAL= option
PROC GLIMMIX statement, 2931

ERROR= option
MODEL statement (GLIMMIX), 3003

ESTIMATE statement
GLIMMIX procedure, 2969

ESTIMATES option
COVTEST statement (GLIMMIX), 2968

EXP option
ESTIMATE statement (GLIMMIX), 2972
LSMESTIMATE statement (GLIMMIX), 2994

EXPHESSIAN option
PROC GLIMMIX statement, 2934

FDIGITS= option
PROC GLIMMIX statement, 2934

FREQ statement
GLIMMIX procedure, 2975

FTEST option
LSMESTIMATE statement (GLIMMIX), 2994

G option
RANDOM statement (GLIMMIX), 3023

GC option

RANDOM statement (GLIMMIX), 3023
GCI option

RANDOM statement (GLIMMIX), 3023
GCOORD= option

RANDOM statement (GLIMMIX), 3023
GCORR option

RANDOM statement (GLIMMIX), 3023
GI option

RANDOM statement (GLIMMIX), 3023
GLIMMIX procedure, 2928

CONTRAST statement, 2957
COVTEST statement, 2961
EFFECT statement, 2969
ESTIMATE statement, 2969
FREQ statement, 2975
ID statement, 2975
LSMEANS statement, 2976
LSMESTIMATE statement, 2990
MODEL statement, 2997
NLOPTIONS statement, 3011
OUTPUT statement, 3012
PARMS statement, 3016
PROC GLIMMIX statement, 2928
Programming statements, 3042
RANDOM statement, 3021
syntax, 2928
WEIGHT statement, 3041

GLIMMIX procedure, BY statement, 2955
GLIMMIX procedure, CONTRAST statement, 2957

BYCAT option, 2959
BYCATEGORY option, 2959
CHISQ option, 2960
DF= option, 2960
E option, 2960
GROUP option, 2960
SINGULAR= option, 2961
SUBJECT option, 2961

GLIMMIX procedure, COVTEST statement, 2961
CL option, 2965
CLASSICAL option, 2967
ESTIMATES option, 2968
MAXITER= option, 2968
PARMS option, 2968
RESTART option, 2968
TOLERANCE= option, 2968
WALD option, 2969
WGHT= option, 2969

GLIMMIX procedure, DF= statement
CLASSICAL option, 2967

GLIMMIX procedure, EFFECT statement, 2969
GLIMMIX procedure, ESTIMATE statement, 2969

ADJDFE= option, 2970
ADJUST= option, 2971
ALPHA= option, 2971



BYCAT option, 2971
BYCATEGORY option, 2971
CL option, 2972
DF= option, 2972
DIVISOR= option, 2972
E option, 2972
EXP option, 2972
GROUP option, 2972
ILINK option, 2973
LOWERTAILED option, 2973
SINGULAR= option, 2974
STEPDOWN option, 2974
SUBJECT option, 2975
UPPERTAILED option, 2975

GLIMMIX procedure, FREQ statement, 2975
GLIMMIX procedure, ID statement, 2975
GLIMMIX procedure, LSMEANS statement, 2976

ADJUST= option, 2978
ALPHA= option, 2980
AT MEANS option, 2980
AT option, 2980
BYLEVEL option, 2981
CL option, 2981
CORR option, 2981
COV option, 2981
DF= option, 2981
DIFF option, 2981
E option, 2982
ILINK option, 2982
LINES option, 2982
OBSMARGINS option, 2983
ODDS option, 2983
ODDSRATIO option, 2983
OM option, 2983
PDIFF option, 2981, 2984
PLOT option, 2984
PLOTS option, 2984
SIMPLEDIFF= option, 2987
SIMPLEDIFFTYPE option, 2988
SINGULAR= option, 2986
SLICE= option, 2987
SLICEDIFF= option, 2987
SLICEDIFFTYPE option, 2988
STEPDOWN option, 2989

GLIMMIX procedure, LSMESTIMATE statement,
2990

ADJUST= option, 2992
ALPHA= option, 2992
AT MEANS option, 2992
AT option, 2992
BYLEVEL option, 2992
CHISQ option, 2993
CL option, 2993
CORR option, 2993

COV option, 2993
DF= option, 2993
DIVISOR= option, 2993
E option, 2993
ELSM option, 2993
EXP option, 2994
FTEST option, 2994
ILINK option, 2995
JOINT option, 2994
LOWERTAILED option, 2995
OBSMARGINS option, 2996
OM option, 2996
SINGULAR= option, 2996
STEPDOWN option, 2996
UPPERTAILED option, 2997

GLIMMIX procedure, MODEL statement, 2997
CHISQ option, 3000
CL option, 3000
CORRB option, 3000
COVB option, 3000
COVBI option, 3001
DDF= option, 3001
DDFM= option, 3001
DESCENDING option, 2999
DF= option, 3001
DIST= option, 3003
DISTRIBUTION= option, 3003
E option, 3006
E1 option, 3006
E2 option, 3006
E3 option, 3006
ERROR= option, 3003
HTYPE= option, 3006
INTERCEPT option, 3006
LINK= option, 3006
LWEIGHT= option, 3007
NOCENTER option, 3008
NOINT option, 3008, 3095
ODDSRATIO option, 3008
OFFSET= option, 3010
ORDER= option, 2999
REFLINP= option, 3010
SOLUTION option, 3010, 3096
STDCOEF option, 3010
ZETA= option, 3010

GLIMMIX procedure, OUTPUT statement, 3012
ALLSTATS option, 3015
ALPHA= option, 3015
CPSEUDO option, 3015
DER option, 3015
DERIVATIVES option, 3015
keyword= option, 3013
NOMISS option, 3016
NOUNIQUE option, 3016



NOVAR option, 3016
OBSCAT option, 3016
OUT= option, 3012
SYMBOLS option, 3016

GLIMMIX procedure, PARMS statement, 3016
HOLD= option, 3017
LOWERB= option, 3017
NOBOUND option, 3018
NOITER option, 3018
PARMSDATA= option, 3020
PDATA= option, 3020
UPPERB= option, 3021

GLIMMIX procedure, PROC GLIMMIX statement,
2928

ABSPCONV option, 2930
ASYCORR option, 2930
ASYCOV option, 2930
CHOL option, 2931
CHOLESKY option, 2931
DATA= option, 2931
EMPIRICAL= option, 2931
EXPHESSIAN option, 2934
FDIGITS= option, 2934
GRADIENT option, 2934
HESSIAN option, 2934
IC= option, 2934
INFOCRIT= option, 2934
INITGLM option, 2935
INITITER option, 2936
ITDETAILS option, 2936
LIST option, 2936
MAXLMMUPDATE option, 2936
MAXOPT option, 2936
METHOD= option, 2936
NAMELEN= option, 2942
NOBOUND option, 2942
NOBSDETAIL option, 2942
NOCLPRINT option, 2942
NOFIT option, 2942
NOINITGLM option, 2943
NOITPRINT option, 2943
NOPROFILE option, 2943
NOREML option, 2943
ODDSRATIO option, 2943
OUTDESIGN option, 2945
PCONV option, 2945
PLOT option, 2946
PLOTS option, 2946
PROFILE option, 2953
SCOREMOD option, 2953
SCORING= option, 2953
SINGCHOL= option, 2953
SINGULAR= option, 2954
STARTGLM option, 2954

SUBGRADIENT option, 2954
GLIMMIX procedure, programming statements, 3042

ABORT statement, 3042
CALL statement, 3042
DELETE statement, 3042
DO statement, 3042
GOTO statement, 3042
IF statement, 3042
LINK statement, 3042
PUT statement, 3042
RETURN statement, 3042
SELECT statement, 3042
STOP statement, 3042
SUBSTR statement, 3042
WHEN statement, 3042

GLIMMIX procedure, RANDOM statement, 3021
ALPHA= option, 3022
CL option, 3023
G option, 3023
GC option, 3023
GCI option, 3023
GCOORD= option, 3023
GCORR option, 3023
GI option, 3023
GROUP= option, 3023
KNOTINFO option, 3024
KNOTMAX= option, 3024
KNOTMETHOD= option, 3024
KNOTMIN= option, 3026
LDATA= option, 3026
NOFULLZ option, 3027
RESIDUAL option, 3027
RSIDE option, 3027
SOLUTION option, 3027
SUBJECT= option, 3028
TYPE= option, 3028
V option, 3040
VC option, 3040
VCI option, 3040
VCORR option, 3040
VI option, 3040

GLIMMIX procedure, WEIGHT statement, 3041
GLIMMIX procedure, CLASS statement, 2955

REF= option, 2956
REF= variable option, 2956
TRUNCATE option, 2956

GLIMMIX procedure, CODE statement, 2956
GLIMMIX procedure, PROC GLIMMIX statement

ORDER= option, 2944
GLIMMIX procedure, STORE statement, 3041
GRADIENT option

PROC GLIMMIX statement, 2934
GROUP option

CONTRAST statement (GLIMMIX), 2960



ESTIMATE statement (GLIMMIX), 2972
GROUP= option

RANDOM statement (GLIMMIX), 3023

HESSIAN option
PROC GLIMMIX statement, 2934

HOLD= option
PARMS statement (GLIMMIX), 3017

HTYPE= option
MODEL statement (GLIMMIX), 3006

IC= option
PROC GLIMMIX statement, 2934

ID statement
GLIMMIX procedure, 2975

ILINK option
ESTIMATE statement (GLIMMIX), 2973
LSMEANS statement (GLIMMIX), 2982
LSMESTIMATE statement (GLIMMIX), 2995

INFOCRIT= option
PROC GLIMMIX statement, 2934

INITGLM option
PROC GLIMMIX statement, 2935

INITITER option
PROC GLIMMIX statement, 2936

INTERCEPT option
MODEL statement (GLIMMIX), 3006

ITDETAILS option
PROC GLIMMIX statement, 2936

JOINT option
LSMESTIMATE statement (GLIMMIX), 2994

keyword= option
OUTPUT statement (GLIMMIX), 3013

KNOTINFO option
RANDOM statement (GLIMMIX), 3024

KNOTMAX= option
RANDOM statement (GLIMMIX), 3024

KNOTMETHOD= option
RANDOM statement (GLIMMIX), 3024

KNOTMIN= option
RANDOM statement (GLIMMIX), 3026

KNOTTYPE= suboption
RANDOM statement (GLIMMIX), 3025

LDATA= option
RANDOM statement (GLIMMIX), 3026

LINES option
LSMEANS statement (GLIMMIX), 2982

LINK= option
MODEL statement (GLIMMIX), 3006

LIST option
PROC GLIMMIX statement, 2936

LOWERB= option

PARMS statement (GLIMMIX), 3017
LOWERTAILED option

ESTIMATE statement (GLIMMIX), 2973
LSMESTIMATE statement (GLIMMIX), 2995

LSMEANS statement
GLIMMIX procedure, 2976

LSMESTIMATE statement
GLIMMIX procedure, 2990

LWEIGHT= option
MODEL statement (GLIMMIX), 3007

MAXITER= option
COVTEST statement (GLIMMIX), 2968

MAXLMMUPDATE option
PROC GLIMMIX statement, 2936

MAXOPT option
PROC GLIMMIX statement, 2936

METHOD= option
PROC GLIMMIX statement, 2936

MODEL statement
GLIMMIX procedure, 2997

NAMELEN= option
PROC GLIMMIX statement, 2942

NEAREST suboption
RANDOM statement (GLIMMIX), 3025

NLOPTIONS statement
GLIMMIX procedure, 3011

NOBOUND option
PARMS statement (GLIMMIX), 3018
PROC GLIMMIX statement, 2942

NOBSDETAIL option
PROC GLIMMIX statement, 2942

NOCENTER option
MODEL statement (GLIMMIX), 3008

NOCLPRINT option
PROC GLIMMIX statement, 2942

NOFIT option
PROC GLIMMIX statement, 2942

NOFULLZ option
RANDOM statement (GLIMMIX), 3027

NOINITGLM option
PROC GLIMMIX statement, 2943

NOINT option
MODEL statement (GLIMMIX), 3008, 3095

NOITER option
PARMS statement (GLIMMIX), 3018

NOITPRINT option
PROC GLIMMIX statement, 2943

NOMISS option
OUTPUT statement (GLIMMIX), 3016

NOPROFILE option
PROC GLIMMIX statement, 2943

NOREML option



PROC GLIMMIX statement, 2943
NOUNIQUE option

OUTPUT statement (GLIMMIX), 3016
NOVAR option

OUTPUT statement (GLIMMIX), 3016

OBSCAT option
OUTPUT statement (GLIMMIX), 3016

OBSMARGINS option
LSMEANS statement (GLIMMIX), 2983
LSMESTIMATE statement (GLIMMIX), 2996

ODDS option
LSMEANS statement (GLIMMIX), 2983

ODDSRATIO option
LSMEANS statement (GLIMMIX), 2983
MODEL statement (GLIMMIX), 3008
PROC GLIMMIX statement, 2943

OFFSET= option
MODEL statement (GLIMMIX), 3010

OM option
LSMEANS statement (GLIMMIX), 2983
LSMESTIMATE statement (GLIMMIX), 2996

ORDER= option
MODEL statement, 2999
PROC GLIMMIX statement, 2944

OUT= option
OUTPUT statement (GLIMMIX), 3012

OUTDESIGN option
PROC GLIMMIX statement, 2945

OUTPUT statement
GLIMMIX procedure, 3012

PARMS option
COVTEST statement (GLIMMIX), 2968

PARMS statement
GLIMMIX procedure, 3016

PARMSDATA= option
PARMS statement (GLIMMIX), 3020

PCONV option
PROC GLIMMIX statement, 2945

PDATA= option
PARMS statement (GLIMMIX), 3020

PDIFF option
LSMEANS statement (GLIMMIX), 2981, 2984

PLOT option
LSMEANS statement (GLIMMIX), 2984
PROC GLIMMIX statement, 2946

PLOTS option
LSMEANS statement (GLIMMIX), 2984
PROC GLIMMIX statement, 2946

PROC GLIMMIX procedure, PROC GLIMMIX
statement

SINGRES= option, 2953

PROC GLIMMIX statement, see GLIMMIX
procedure

GLIMMIX procedure, 2928
PROFILE option

PROC GLIMMIX statement, 2953
Programming statements

GLIMMIX procedure, 3042

RANDOM statement
GLIMMIX procedure, 3021

RANDOM statement (GLIMMIX)
BUCKET= suboption, 3024
KNOTTYPE= suboption, 3025
NEAREST suboption, 3025
TREEINFO suboption, 3025

REF= option
CLASS statement (GLIMMIX), 2956

REFLINP= option
MODEL statement (GLIMMIX), 3010

RESIDUAL option
RANDOM statement (GLIMMIX), 3027

RESTART option
COVTEST statement (GLIMMIX), 2968

RSIDE option
RANDOM statement (GLIMMIX), 3027

SCOREMOD option
PROC GLIMMIX statement, 2953

SCORING= option
PROC GLIMMIX statement, 2953

SIMPLEDIFFTYPE option
LSMEANS statement (GLIMMIX), 2988

SIMPLEEDIFF= option
LSMEANS statement (GLIMMIX), 2987

SINGCHOL= option
PROC GLIMMIX statement, 2953

SINGRES= option
PROC GLIMMIX statement (GLIMMIX), 2953

SINGULAR= option
CONTRAST statement (GLIMMIX), 2961
ESTIMATE statement (GLIMMIX), 2974
LSMEANS statement (GLIMMIX), 2986
LSMESTIMATE statement (GLIMMIX), 2996
PROC GLIMMIX statement, 2954

SLICE= option
LSMEANS statement (GLIMMIX), 2987

SLICEDIFF= option
LSMEANS statement (GLIMMIX), 2987

SLICEDIFFTYPE option
LSMEANS statement (GLIMMIX), 2988

SOLUTION option
MODEL statement (GLIMMIX), 3010, 3096
RANDOM statement (GLIMMIX), 3027

STARTGLM option



PROC GLIMMIX statement, 2954
STDCOEF option

MODEL statement (GLIMMIX), 3010
STEPDOWN option

ESTIMATE statement (GLIMMIX), 2974
LSMEANS statement (GLIMMIX), 2989
LSMESTIMATE statement (GLIMMIX), 2996

STORE statement
GLIMMIX procedure, 3041

SUBGRADIENT option
PROC GLIMMIX statement, 2954

SUBJECT option
CONTRAST statement (GLIMMIX), 2961
ESTIMATE statement (GLIMMIX), 2975

SUBJECT= option
RANDOM statement (GLIMMIX), 3028

SYMBOLS option
OUTPUT statement (GLIMMIX), 3016

TOLERANCE= option
COVTEST statement (GLIMMIX), 2968

TREEINFO suboption
RANDOM statement (GLIMMIX), 3025

TRUNCATE option
CLASS statement (GLIMMIX), 2956

TYPE= option
RANDOM statement (GLIMMIX), 3028

UPPERB= option
PARMS statement (GLIMMIX), 3021

UPPERTAILED option
ESTIMATE statement (GLIMMIX), 2975
LSMESTIMATE statement (GLIMMIX), 2997

V option
RANDOM statement (GLIMMIX), 3040

VC option
RANDOM statement (GLIMMIX), 3040

VCI option
RANDOM statement (GLIMMIX), 3040

VCORR option
RANDOM statement (GLIMMIX), 3040

VI option
RANDOM statement (GLIMMIX), 3040

WALD option
COVTEST statement (GLIMMIX), 2969

WEIGHT statement
GLIMMIX procedure, 3041

WGHT= option
COVTEST statement (GLIMMIX), 2969

ZETA= option
MODEL statement (GLIMMIX), 3010
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